We are given two strings P and Q, each consisting of N lowercase English letters. For each position in the strings, we have to choose one letter from either P or Q, in order to construct a new string S, such that the number of distinct letters in S is minimal. Our task is to find the number of distinct letters in the resulting string S.
For example, if P = "ca" and Q = "ab", S can be equal to: "ca", "cb", "aa" or "ab". String "aa" has only one distinct letter ('a'), so the answer is 1 (which is minimal among those strings).
Write a function:
def solution(P, Q)
that, given two strings P and Q, both of length N, returns the minimum number of distinct letters of a string S, that can be constructed from P and Q as described above.
Examples:
1. Given P = "abc", Q = "bcd", your function should return 2. All possible strings S that can be constructed are: "abc", "abd", "acc", "acd", "bbc", "bbd", "bcc", "bcd". The minimum number of distinct letters is 2, which be obtained by constructing the following strings: "acc", "bbc", "bbd", "bcc".
2. Given P = "axxz", Q = "yzwy", your function should return 2. String S must consist of at least two distinct letters in this case. We can construct S = "yxxy", where the number of distinct letters is equal to 2, and this is the only optimal solution.
3. Given P = "bacad", Q = "abada", your function should return 1. We can choose the letter 'a' in each position, so S can be equal to "aaaaa".
4. Given P = "amz", Q = "amz", your function should return 3. The input strings are identical, so the only possible S that can be constructed is "amz", and its number of distinct letters is 3.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..200,000];
- strings P and Q are both of length N;
- strings P and Q are made only of lowercase letters (a−z);
- strings P and Q contain a total of at most 20 distinct letters.
# you can write to stdout for debugging purposes, e.g.
# print("this is a debug message")
def solution(P, Q):
from itertools import combinations
# Step 1: Assign indices to each distinct letter
letters = set(P + Q)
letter_to_index = {c: i for i, c in enumerate(letters)}
index_to_letter = {i: c for c, i in letter_to_index.items()}
D = len(letter_to_index)
# Step 2: Collect required letters (R) first
R = set()
for p, q in zip(P, Q):
if p == q:
R.add(letter_to_index[p])
# Step 3: Collect edges where P[i] != Q[i] and neither P[i] nor Q[i] is in R
edge_set = set()
for p, q in zip(P, Q):
if p != q:
u = letter_to_index[p]
v = letter_to_index[q]
if u not in R and v not in R:
if u > v:
u, v = v, u
edge_set.add((u, v))
# Step 4: Define G' nodes (excluding R)
G_nodes = sorted(set(range(D)) - R)
D_prime = len(G_nodes)
node_map = {node: i for i, node in enumerate(G_nodes)}
# Step 5: Assign edge indices
edge_list = list(edge_set)
E = len(edge_list)
if E == 0:
return len(R) # No edges to cover
# Step 6: Compute node cover masks
node_cover_masks = [0] * D_prime
for e, (u, v) in enumerate(edge_list):
if u in node_map:
node_cover_masks[node_map[u]] |= (1 << e)
if v in node_map:
node_cover_masks[node_map[v]] |= (1 << e)
all_cover_mask = (1 << E) - 1 # All edges must be covered
# Step 7: Recursive backtracking to find minimal vertex cover
min_cover = D_prime # Initialize with the maximum possible
def backtrack(current_cover, covered_mask, k):
nonlocal min_cover
if covered_mask == all_cover_mask:
if k < min_cover:
min_cover = k
return
if k >= min_cover:
return
# Find the first uncovered edge
first_uncovered = (covered_mask ^ all_cover_mask).bit_length() - 1
if first_uncovered < 0 or first_uncovered >= E:
if k < min_cover:
min_cover = k
return
u, v = edge_list[first_uncovered]
# Try including u
if u in node_map:
backtrack(current_cover | (1 << node_map[u]),
covered_mask | node_cover_masks[node_map[u]],
k + 1)
# Try including v
if v in node_map:
backtrack(current_cover | (1 << node_map[v]),
covered_mask | node_cover_masks[node_map[v]],
k + 1)
backtrack(0, 0, 0)
return len(R) + min_cover
# you can write to stdout for debugging purposes, e.g.
# print("this is a debug message")
def solution(P, Q):
from itertools import combinations
# Step 1: Assign indices to each distinct letter
letters = set(P + Q)
letter_to_index = {c: i for i, c in enumerate(letters)}
index_to_letter = {i: c for c, i in letter_to_index.items()}
D = len(letter_to_index)
# Step 2: Collect required letters (R) first
R = set()
for p, q in zip(P, Q):
if p == q:
R.add(letter_to_index[p])
# Step 3: Collect edges where P[i] != Q[i] and neither P[i] nor Q[i] is in R
edge_set = set()
for p, q in zip(P, Q):
if p != q:
u = letter_to_index[p]
v = letter_to_index[q]
if u not in R and v not in R:
if u > v:
u, v = v, u
edge_set.add((u, v))
# Step 4: Define G' nodes (excluding R)
G_nodes = sorted(set(range(D)) - R)
D_prime = len(G_nodes)
node_map = {node: i for i, node in enumerate(G_nodes)}
# Step 5: Assign edge indices
edge_list = list(edge_set)
E = len(edge_list)
if E == 0:
return len(R) # No edges to cover
# Step 6: Compute node cover masks
node_cover_masks = [0] * D_prime
for e, (u, v) in enumerate(edge_list):
if u in node_map:
node_cover_masks[node_map[u]] |= (1 << e)
if v in node_map:
node_cover_masks[node_map[v]] |= (1 << e)
all_cover_mask = (1 << E) - 1 # All edges must be covered
# Step 7: Recursive backtracking to find minimal vertex cover
min_cover = D_prime # Initialize with the maximum possible
def backtrack(current_cover, covered_mask, k):
nonlocal min_cover
if covered_mask == all_cover_mask:
if k < min_cover:
min_cover = k
return
if k >= min_cover:
return
# Find the first uncovered edge
first_uncovered = (covered_mask ^ all_cover_mask).bit_length() - 1
if first_uncovered < 0 or first_uncovered >= E:
if k < min_cover:
min_cover = k
return
u, v = edge_list[first_uncovered]
# Try including u
if u in node_map:
backtrack(current_cover | (1 << node_map[u]),
covered_mask | node_cover_masks[node_map[u]],
k + 1)
# Try including v
if v in node_map:
backtrack(current_cover | (1 << node_map[v]),
covered_mask | node_cover_masks[node_map[v]],
k + 1)
backtrack(0, 0, 0)
return len(R) + min_cover
# you can write to stdout for debugging purposes, e.g.
# print("this is a debug message")
def solution(P, Q):
from itertools import combinations
# Step 1: Assign indices to each distinct letter
letters = set(P + Q)
letter_to_index = {c: i for i, c in enumerate(letters)}
index_to_letter = {i: c for c, i in letter_to_index.items()}
D = len(letter_to_index)
# Step 2: Collect required letters (R) first
R = set()
for p, q in zip(P, Q):
if p == q:
R.add(letter_to_index[p])
# Step 3: Collect edges where P[i] != Q[i] and neither P[i] nor Q[i] is in R
edge_set = set()
for p, q in zip(P, Q):
if p != q:
u = letter_to_index[p]
v = letter_to_index[q]
if u not in R and v not in R:
if u > v:
u, v = v, u
edge_set.add((u, v))
# Step 4: Define G' nodes (excluding R)
G_nodes = sorted(set(range(D)) - R)
D_prime = len(G_nodes)
node_map = {node: i for i, node in enumerate(G_nodes)}
# Step 5: Assign edge indices
edge_list = list(edge_set)
E = len(edge_list)
if E == 0:
return len(R) # No edges to cover
# Step 6: Compute node cover masks
node_cover_masks = [0] * D_prime
for e, (u, v) in enumerate(edge_list):
if u in node_map:
node_cover_masks[node_map[u]] |= (1 << e)
if v in node_map:
node_cover_masks[node_map[v]] |= (1 << e)
all_cover_mask = (1 << E) - 1 # All edges must be covered
# Step 7: Recursive backtracking to find minimal vertex cover
min_cover = D_prime # Initialize with the maximum possible
def backtrack(current_cover, covered_mask, k):
nonlocal min_cover
if covered_mask == all_cover_mask:
if k < min_cover:
min_cover = k
return
if k >= min_cover:
return
# Find the first uncovered edge
first_uncovered = (covered_mask ^ all_cover_mask).bit_length() - 1
if first_uncovered < 0 or first_uncovered >= E:
if k < min_cover:
min_cover = k
return
u, v = edge_list[first_uncovered]
# Try including u
if u in node_map:
backtrack(current_cover | (1 << node_map[u]),
covered_mask | node_cover_masks[node_map[u]],
k + 1)
# Try including v
if v in node_map:
backtrack(current_cover | (1 << node_map[v]),
covered_mask | node_cover_masks[node_map[v]],
k + 1)
backtrack(0, 0, 0)
return len(R) + min_cover
The solution obtained perfect score.
A - size of the alphabet
Small tests where some letters have big but similar frequencies, N <= 17, A <= 12.