A non-empty array A consisting of N integers is given. Array A represents numbers on a tape.
Any integer P, such that 0 < P < N, splits this tape into two non-empty parts: A[0], A[1], ..., A[P − 1] and A[P], A[P + 1], ..., A[N − 1].
The difference between the two parts is the value of: |(A[0] + A[1] + ... + A[P − 1]) − (A[P] + A[P + 1] + ... + A[N − 1])|
In other words, it is the absolute difference between the sum of the first part and the sum of the second part.
For example, consider array A such that:
A[0] = 3 A[1] = 1 A[2] = 2 A[3] = 4 A[4] = 3We can split this tape in four places:
- P = 1, difference = |3 − 10| = 7
- P = 2, difference = |4 − 9| = 5
- P = 3, difference = |6 − 7| = 1
- P = 4, difference = |10 − 3| = 7
Write a function:
object Solution { def solution(a: Array[Int]): Int }
that, given a non-empty array A of N integers, returns the minimal difference that can be achieved.
For example, given:
A[0] = 3 A[1] = 1 A[2] = 2 A[3] = 4 A[4] = 3the function should return 1, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−1,000..1,000].
Solution.scala:10: error: @tailrec annotated method contains no recursive calls def go(P: Int): Int = 2 ^ one error found
import scala.collection.JavaConversions._
// you can use println for debugging purposes, e.g.
// println("this is a debug message")
object Solution {
def solution(A: Array[Int]): Int = {
@scala.annotation.tailrec
def go(P: Int, currentMin: Int): Int = {
if (P >= A.length) currentMin
else go(P + 1, currentMin)
}
go(1, Int.MaxValue)
}
}
import scala.collection.JavaConversions._
// you can use println for debugging purposes, e.g.
// println("this is a debug message")
object Solution {
def solution(A: Array[Int]): Int = {
val total = A.sum
@scala.annotation.tailrec
def go(P: Int, currentMin: Int, rightSide: Int): Int = {
if (P >= A.length) currentMin
else {
val currentvalue = A(P - 1)
val newRightSide = rightSide - newRightSide
val leftSide = sum - newRightSide
val newMin = math.abs(leftSide - newRightSide) min currentMin
go(P + 1, newMin, newRightSide)
}
}
go(1, Int.MaxValue)
}
}
Solution.scala:16: error: recursive value newRightSide needs type val newRightSide = rightSide - newRightSide ^ Solution.scala:17: error: not found: value sum val leftSide = sum - newRightSide ^ Solution.scala:23: error: not enough arguments for method go: (P: Int, currentMin: Int, rightSide: Int)Int. Unspecified value parameter rightSide. go(1, Int.MaxValue) ^ three errors found
import scala.collection.JavaConversions._
// you can use println for debugging purposes, e.g.
// println("this is a debug message")
object Solution {
def solution(A: Array[Int]): Int = {
val total = A.sum
@scala.annotation.tailrec
def go(P: Int, currentMin: Int, rightSide: Int): Int = {
if (P >= A.length) currentMin
else {
val currentvalue = A(P - 1)
val newRightSide = rightSide - newRightSide
val leftSide = sum - newRightSide
val newMin = math.abs(leftSide - newRightSide) min currentMin
go(P + 1, newMin, newRightSide)
}
}
go(1, Int.MaxValue, total)
}
}
Solution.scala:16: error: recursive value newRightSide needs type val newRightSide = rightSide - newRightSide ^ Solution.scala:17: error: not found: value sum val leftSide = sum - newRightSide ^ two errors found
import scala.collection.JavaConversions._
// you can use println for debugging purposes, e.g.
// println("this is a debug message")
object Solution {
def solution(A: Array[Int]): Int = {
val total = A.sum
@scala.annotation.tailrec
def go(P: Int, currentMin: Int, rightSide: Int): Int = {
if (P >= A.length) currentMin
else {
val currentvalue = A(P - 1)
val newRightSide = rightSide - newRightSide
val leftSide = total - newRightSide
val newMin = math.abs(leftSide - newRightSide) min currentMin
go(P + 1, newMin, newRightSide)
}
}
go(1, Int.MaxValue, total)
}
}
Solution.scala:16: error: recursive value newRightSide needs type val newRightSide = rightSide - newRightSide ^ one error found
import scala.collection.JavaConversions._
// you can use println for debugging purposes, e.g.
// println("this is a debug message")
object Solution {
def solution(A: Array[Int]): Int = {
val total = A.sum
@scala.annotation.tailrec
def go(P: Int, currentMin: Int, rightSide: Int): Int = {
if (P >= A.length) currentMin
else {
val currentvalue = A(P - 1)
val newRightSide = rightSide - currentValue
val leftSide = total - newRightSide
val newMin = math.abs(leftSide - newRightSide) min currentMin
go(P + 1, newMin, newRightSide)
}
}
go(1, Int.MaxValue, total)
}
}
Solution.scala:16: error: not found: value currentValue val newRightSide = rightSide - currentValue ^ one error found
import scala.collection.JavaConversions._
// you can use println for debugging purposes, e.g.
// println("this is a debug message")
object Solution {
def solution(A: Array[Int]): Int = {
val total = A.sum
@scala.annotation.tailrec
def go(P: Int, currentMin: Int, rightSide: Int): Int = {
if (P >= A.length) currentMin
else {
val currentValue = A(P - 1)
val newRightSide = rightSide - currentValue
val leftSide = total - newRightSide
val newMin = math.abs(leftSide - newRightSide) min currentMin
go(P + 1, newMin, newRightSide)
}
}
go(1, Int.MaxValue, total)
}
}
import scala.collection.JavaConversions._
// you can use println for debugging purposes, e.g.
// println("this is a debug message")
object Solution {
def solution(A: Array[Int]): Int = {
val total = A.sum
@scala.annotation.tailrec
def go(P: Int, currentMin: Int, rightSide: Int): Int = {
if (P >= A.length) currentMin
else {
val currentValue = A(P - 1)
val newRightSide = rightSide - currentValue
val leftSide = total - newRightSide
val newMin = math.abs(leftSide - newRightSide) min currentMin
go(P + 1, newMin, newRightSide)
}
}
go(1, Int.MaxValue, total)
}
}
import scala.collection.JavaConversions._
// you can use println for debugging purposes, e.g.
// println("this is a debug message")
object Solution {
def solution(A: Array[Int]): Int = {
val total = A.sum
@scala.annotation.tailrec
def go(P: Int, currentMin: Int, rightSide: Int): Int = {
if (P >= A.length) currentMin
else {
val currentValue = A(P - 1)
val newRightSide = rightSide - currentValue
val leftSide = total - newRightSide
val newMin = math.abs(leftSide - newRightSide) min currentMin
go(P + 1, newMin, newRightSide)
}
}
go(1, Int.MaxValue, total)
}
}
The solution obtained perfect score.