**Task Score**

**Correctness**

**Performance**

You are given N counters, initially set to 0, and you have two possible operations on them:

increase(X)− counter X is increased by 1,max counter− all counters are set to the maximum value of any counter.

A non-empty array A of M integers is given. This array represents consecutive operations:

- if A[K] = X, such that 1 ≤ X ≤ N, then operation K is increase(X),
- if A[K] = N + 1 then operation K is max counter.

For example, given integer N = 5 and array A such that:

`A[0] = 3 A[1] = 4 A[2] = 4 A[3] = 6 A[4] = 1 A[5] = 4 A[6] = 4`

the values of the counters after each consecutive operation will be:

`(0, 0, 1, 0, 0) (0, 0, 1, 1, 0) (0, 0, 1, 2, 0) (2, 2, 2, 2, 2) (3, 2, 2, 2, 2) (3, 2, 2, 3, 2) (3, 2, 2, 4, 2)`

The goal is to calculate the value of every counter after all operations.

Write a function:

def solution(n, a)

that, given an integer N and a non-empty array A consisting of M integers, returns a sequence of integers representing the values of the counters.

Result array should be returned as an array of integers.

For example, given:

`A[0] = 3 A[1] = 4 A[2] = 4 A[3] = 6 A[4] = 1 A[5] = 4 A[6] = 4`

the function should return [3, 2, 2, 4, 2], as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N and M are integers within the range [1..100,000];
- each element of array A is an integer within the range [1..
N + 1].

*not defined yet*