A non-empty array A consisting of N numbers is given. The array is sorted in non-decreasing order. The absolute distinct count of this array is the number of distinct absolute values among the elements of the array.
For example, consider array A such that:
A[0] = -5 A[1] = -3 A[2] = -1 A[3] = 0 A[4] = 3 A[5] = 6The absolute distinct count of this array is 5, because there are 5 distinct absolute values among the elements of this array, namely 0, 1, 3, 5 and 6.
Write a function:
class Solution { public int solution(int[] A); }
that, given a non-empty array A consisting of N numbers, returns absolute distinct count of array A.
For example, given array A such that:
A[0] = -5 A[1] = -3 A[2] = -1 A[3] = 0 A[4] = 3 A[5] = 6the function should return 5, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647];
- array A is sorted in non-decreasing order.
// you can also use imports, for example:
// import java.util.*;
// you can write to stdout for debugging purposes, e.g.
// System.out.println("this is a debug message");
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
HashMap<Integer, Boolean> resultMap = new HashMap<Integer, Boolean>();
int cnt=0;
for(int i=0; i<A.length; i++){
resultMap.put(Math.abs(A[i]), true);
// if(!resultArray.contains(Math.abs(A[i]))) resultArray.add(Math.abs(A[i]));
}
// System.out.println("resultArray = " + resultArray.size() +", resultMap = "+resultMap.size());
return cnt;
}
}
// you can also use imports, for example:
// import java.util.*;
// you can write to stdout for debugging purposes, e.g.
// System.out.println("this is a debug message");
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
HashMap<Integer, Boolean> resultMap = new HashMap<Integer, Boolean>();
for(int i=0; i<A.length; i++){
resultMap.put(Math.abs(A[i]), true);
}
return resultMap.size();
}
}
// you can also use imports, for example:
// import java.util.*;
import java.util.HashMap;
// you can write to stdout for debugging purposes, e.g.
// System.out.println("this is a debug message");
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
HashMap<Integer, Boolean> resultMap = new HashMap<Integer, Boolean>();
for(int i=0; i<A.length; i++){
resultMap.put(Math.abs(A[i]), true);
}
return resultMap.size();
}
}
// you can also use imports, for example:
// import java.util.*;
import java.util.HashMap;
// you can write to stdout for debugging purposes, e.g.
// System.out.println("this is a debug message");
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
HashMap<Integer, Boolean> resultMap = new HashMap<Integer, Boolean>();
for(int i=0; i<A.length; i++){
resultMap.put(Math.abs(A[i]), true);
}
return resultMap.size();
}
}
// you can also use imports, for example:
// import java.util.*;
import java.util.HashMap;
// you can write to stdout for debugging purposes, e.g.
// System.out.println("this is a debug message");
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
HashMap<Integer, Boolean> resultMap = new HashMap<Integer, Boolean>();
for(int i=0; i<A.length; i++){
resultMap.put(Math.abs(A[i]), true);
}
return resultMap.size();
}
}
The solution obtained perfect score.