An array A consisting of N integers is given. The dominator of array A is the value that occurs in more than half of the elements of A.
For example, consider array A such that
A[0] = 3 A[1] = 4 A[2] = 3 A[3] = 2 A[4] = 3 A[5] = -1 A[6] = 3 A[7] = 3The dominator of A is 3 because it occurs in 5 out of 8 elements of A (namely in those with indices 0, 2, 4, 6 and 7) and 5 is more than a half of 8.
Write a function
class Solution { public int solution(int[] A); }
that, given an array A consisting of N integers, returns index of any element of array A in which the dominator of A occurs. The function should return −1 if array A does not have a dominator.
For example, given array A such that
A[0] = 3 A[1] = 4 A[2] = 3 A[3] = 2 A[4] = 3 A[5] = -1 A[6] = 3 A[7] = 3the function may return 0, 2, 4, 6 or 7, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
import java.util.*;
// you can write to stdout for debugging purposes, e.g.
// System.out.println("this is a debug message");
class Solution {
public int solution(int[] A) {
Stack<Integer> item = new Stack<>();
for(int i=0; i<A.length; i++){
if(item.isEmpty() || item.peek() == A[i]){
item.push(A[i]);
}else{
item.pop();
}
}
int cnt=0;
int pos = -1;
int num = item.pop();
for(int i=0; i<A.length; i++){
if(A[i] == num){
if(pos == -1){
pos = i;
}
cnt++;
}
}
if(A.length / 2 < cnt) {
return pos;
}else{
return -1;
}
// write your code in Java SE 8
}
}
import java.util.*;
// you can write to stdout for debugging purposes, e.g.
// System.out.println("this is a debug message");
class Solution {
public int solution(int[] A) {
Stack<Integer> item = new Stack<>();
for(int i=0; i<A.length; i++){
if(item.isEmpty() || item.peek() == A[i]){
item.push(A[i]);
}else{
item.pop();
}
}
int cnt=0;
int pos = -1;
i9
int num = item.pop();
for(int i=0; i<A.length; i++){
if(A[i] == num){
if(pos == -1){
pos = i;
}
cnt++;
}
}
if(A.length / 2 < cnt) {
return pos;
}else{
return -1;
}
// write your code in Java SE 8
}
}
import java.util.*;
// you can write to stdout for debugging purposes, e.g.
// System.out.println("this is a debug message");
class Solution {
public int solution(int[] A) {
Stack<Integer> item = new Stack<>();
for(int i=0; i<A.length; i++){
if(item.isEmpty() || item.peek() == A[i]){
item.push(A[i]);
}else{
item.pop();
}
}
int cnt=0;
int pos = -1;
if(item.isEmpty()){
return -1;
}
int num = item.pop();
for(int i=0; i<A.length; i++){
if(A[i] == num){
if(pos == -1){
pos = i;
}
cnt++;
}
}
if(A.length / 2 < cnt) {
return pos;
}else{
return -1;
}
// write your code in Java SE 8
}
}
import java.util.*;
// you can write to stdout for debugging purposes, e.g.
// System.out.println("this is a debug message");
class Solution {
public int solution(int[] A) {
Stack<Integer> item = new Stack<>();
for(int i=0; i<A.length; i++){
if(item.isEmpty() || item.peek() == A[i]){
item.push(A[i]);
}else{
item.pop();
}
}
int cnt=0;
int pos = -1;
if(item.isEmpty()){
return -1;
}
int num = item.pop();
for(int i=0; i<A.length; i++){
if(A[i] == num){
if(pos == -1){
pos = i;
}
cnt++;
}
}
if(A.length / 2 < cnt) {
return pos;
}else{
return -1;
}
// write your code in Java SE 8
}
}
import java.util.*;
// you can write to stdout for debugging purposes, e.g.
// System.out.println("this is a debug message");
class Solution {
public int solution(int[] A) {
Stack<Integer> item = new Stack<>();
for(int i=0; i<A.length; i++){
if(item.isEmpty() || item.peek() == A[i]){
item.push(A[i]);
}else{
item.pop();
}
}
int cnt=0;
int pos = -1;
if(item.isEmpty()){
return -1;
}
int num = item.pop();
for(int i=0; i<A.length; i++){
if(A[i] == num){
if(pos == -1){
pos = i;
}
cnt++;
}
}
if(A.length / 2 < cnt) {
return pos;
}else{
return -1;
}
// write your code in Java SE 8
}
}
The solution obtained perfect score.