easy

Minimize the value |(A[0] + ... + A[P-1]) - (A[P] + ... + A[N-1])|.

Task description

A non-empty array A consisting of N integers is given. Array A represents numbers on a tape.

Any integer P, such that 0 < P < N, splits this tape into two non-empty parts: A[0], A[1], ..., A[P − 1] and A[P], A[P + 1], ..., A[N − 1].

The *difference* between the two parts is the value of: |(A[0] + A[1] + ... + A[P − 1]) − (A[P] + A[P + 1] + ... + A[N − 1])|

In other words, it is the absolute difference between the sum of the first part and the sum of the second part.

For example, consider array A such that:

We can split this tape in four places:

- P = 1, difference = |3 − 10| = 7

- P = 2, difference = |4 − 9| = 5

- P = 3, difference = |6 − 7| = 1

- P = 4, difference = |10 − 3| = 7

Write a function:

def solution(a)

that, given a non-empty array A of N integers, returns the minimal difference that can be achieved.

For example, given:

the function should return 1, as explained above.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−1,000..1,000].

Copyright 2009–2019 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

Solution

Programming language used Ruby

Total time used 1 minutes

Effective time used 1 minutes

Notes
*not defined yet*

Task timeline