A DNA sequence can be represented as a string consisting of the letters A, C, G and T, which correspond to the types of successive nucleotides in the sequence. Each nucleotide has an impact factor, which is an integer. Nucleotides of types A, C, G and T have impact factors of 1, 2, 3 and 4, respectively. You are going to answer several queries of the form: What is the minimal impact factor of nucleotides contained in a particular part of the given DNA sequence?
The DNA sequence is given as a non-empty string S = S[0]S[1]...S[N-1] consisting of N characters. There are M queries, which are given in non-empty arrays P and Q, each consisting of M integers. The K-th query (0 ≤ K < M) requires you to find the minimal impact factor of nucleotides contained in the DNA sequence between positions P[K] and Q[K] (inclusive).
For example, consider string S = CAGCCTA and arrays P, Q such that:
P[0] = 2 Q[0] = 4 P[1] = 5 Q[1] = 5 P[2] = 0 Q[2] = 6The answers to these M = 3 queries are as follows:
- The part of the DNA between positions 2 and 4 contains nucleotides G and C (twice), whose impact factors are 3 and 2 respectively, so the answer is 2.
- The part between positions 5 and 5 contains a single nucleotide T, whose impact factor is 4, so the answer is 4.
- The part between positions 0 and 6 (the whole string) contains all nucleotides, in particular nucleotide A whose impact factor is 1, so the answer is 1.
Write a function:
def solution(S, P, Q)
that, given a non-empty string S consisting of N characters and two non-empty arrays P and Q consisting of M integers, returns an array consisting of M integers specifying the consecutive answers to all queries.
Result array should be returned as an array of integers.
For example, given the string S = CAGCCTA and arrays P, Q such that:
P[0] = 2 Q[0] = 4 P[1] = 5 Q[1] = 5 P[2] = 0 Q[2] = 6the function should return the values [2, 4, 1], as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..100,000];
- M is an integer within the range [1..50,000];
- each element of arrays P and Q is an integer within the range [0..N - 1];
- P[K] ≤ Q[K], where 0 ≤ K < M;
- string S consists only of upper-case English letters A, C, G, T.
from copy import deepcopy
ip = {'A':1, 'C':2, 'G':3, 'T':4}
ip_rev = {1: 'A', 2: 'C', 3: 'G', 4: 'T'}
def solution(S, P, Q):
ret = []
N, M = len(S), len(P)
counter = [[0,0,0,0] for _ in range(N)]
for idx, c in enumerate(S):
counter[idx] = deepcopy(counter[idx-1])
counter[idx][ip[c]-1] += 1
# print(ip.values().index(0))
counter.insert(0, [0,0,0,0])
for idx in range(M):
start, end = P[idx], Q[idx]
if start == end:
ret.append(ip[S[start]])
else:
for i in range(4):
if counter[end][i] - counter[start][i] > 0:
# print(i)
ret.append(ip[ip_rev[i+1]])
break
return ret
from copy import deepcopy
ip = {'A':1, 'C':2, 'G':3, 'T':4}
ip_rev = {1: 'A', 2: 'C', 3: 'G', 4: 'T'}
def solution(S, P, Q):
ret = []
N, M = len(S), len(P)
counter = [[0,0,0,0] for _ in range(N)]
for idx, c in enumerate(S):
counter[idx] = deepcopy(counter[idx-1])
counter[idx][ip[c]-1] += 1
# print(ip.values().index(0))
counter.insert(0, [0,0,0,0])
for idx in range(M):
start, end = P[idx], Q[idx]
if start == end:
ret.append(ip[S[start]])
else:
for i in range(4):
if counter[end][i] - counter[start][i] > 0:
ret.append(i+1)
break
return ret
from copy import deepcopy
ip = {'A':1, 'C':2, 'G':3, 'T':4}
ip_rev = {1: 'A', 2: 'C', 3: 'G', 4: 'T'}
def solution(S, P, Q):
ret = []
N, M = len(S), len(P)
counter = [[0,0,0,0] for _ in range(N)]
for idx, c in enumerate(S):
counter[idx] = deepcopy(counter[idx-1])
counter[idx][ip[c]-1] += 1
# print(ip.values().index(0))
counter.insert(0, [0,0,0,0])
for idx in range(M):
start, end = P[idx], Q[idx]
if start == end:
ret.append(ip[S[start]])
else:
for i in range(4):
if counter[end][i] - counter[start][i] > 0:
ret.append(i+1)
break
return ret
from copy import deepcopy
ip = {'A':1, 'C':2, 'G':3, 'T':4}
ip_rev = {1: 'A', 2: 'C', 3: 'G', 4: 'T'}
def solution(S, P, Q):
ret = []
N, M = len(S), len(P)
counter = [[0,0,0,0] for _ in range(N)]
for idx, c in enumerate(S):
counter[idx] = deepcopy(counter[idx-1])
counter[idx][ip[c]-1] += 1
# print(ip.values().index(0))
counter.insert(0, [0,0,0,0])
for idx in range(M):
start, end = P[idx], Q[idx]
if start == end:
ret.append(ip[S[start]])
else:
for i in range(4):
if counter[end][i] - counter[start][i] > 0:
ret.append(i+1)
break
return ret
['AC', [0, 0, 1], [0, 1, 1]]
['TC', [0, 0, 1], [0, 1, 1]]
function result: [1, 1, 2]
function result: [4, 4, 2]
from copy import deepcopy
ip = {'A':1, 'C':2, 'G':3, 'T':4}
ip_rev = {1: 'A', 2: 'C', 3: 'G', 4: 'T'}
def solution(S, P, Q):
ret = []
N, M = len(S), len(P)
counter = [[0,0,0,0] for _ in range(N)]
for idx, c in enumerate(S):
counter[idx] = deepcopy(counter[idx-1])
counter[idx][ip[c]-1] += 1
# print(ip.values().index(0))
counter.insert(0, [0,0,0,0])
for idx in range(M):
start, end = P[idx]-1, Q[idx]
if start == end:
ret.append(ip[S[start]])
else:
for i in range(4):
if counter[end][i] - counter[start][i] > 0:
ret.append(i+1)
break
return ret
['AC', [0, 0, 1], [0, 1, 1]]
['TC', [0, 0, 1], [0, 1, 1]]
from copy import deepcopy
ip = {'A':1, 'C':2, 'G':3, 'T':4}
ip_rev = {1: 'A', 2: 'C', 3: 'G', 4: 'T'}
def solution(S, P, Q):
ret = []
N, M = len(S), len(P)
counter = [[0,0,0,0] for _ in range(N)]
for idx, c in enumerate(S):
counter[idx] = deepcopy(counter[idx-1])
counter[idx][ip[c]-1] += 1
# print(ip.values().index(0))
counter.insert(0, [0,0,0,0])
for idx in range(M):
start, end = P[idx]-, Q[idx]
if start == end:
ret.append(ip[S[start]])
else:
for i in range(4):
if counter[end][i] - counter[start][i] > 0:
ret.append(i+1)
break
return ret
from copy import deepcopy
ip = {'A':1, 'C':2, 'G':3, 'T':4}
ip_rev = {1: 'A', 2: 'C', 3: 'G', 4: 'T'}
def solution(S, P, Q):
ret = []
N, M = len(S), len(P)
counter = [[0,0,0,0] for _ in range(N)]
for idx, c in enumerate(S):
counter[idx] = deepcopy(counter[idx-1])
counter[idx][ip[c]-1] += 1
# print(ip.values().index(0))
counter.insert(0, [0,0,0,0])
for idx in range(M):
start, end = P[idx]-1, Q[idx]
if start == end:
ret.append(ip[S[start]])
else:
for i in range(4):
if counter[end][i] - counter[start][i] > 0:
ret.append(i+1)
break
return ret
from copy import deepcopy
ip = {'A':1, 'C':2, 'G':3, 'T':4}
ip_rev = {1: 'A', 2: 'C', 3: 'G', 4: 'T'}
def solution(S, P, Q):
ret = []
N, M = len(S), len(P)
counter = [[0,0,0,0] for _ in range(N)]
for idx, c in enumerate(S):
counter[idx] = deepcopy(counter[idx-1])
counter[idx][ip[c]-1] += 1
# print(ip.values().index(0))
counter.append([0,0,0,0])
for idx in range(M):
start, end = P[idx]-1, Q[idx]
if start == end:
ret.append(ip[S[start]])
else:
for i in range(4):
if counter[end][i] - counter[start][i] > 0:
ret.append(i+1)
break
return ret
['AC', [0, 0, 1], [0, 1, 1]]
['TC', [0, 0, 1], [0, 1, 1]]
function result: [1, 1, 2]
function result: [4, 2, 2]
from copy import deepcopy
ip = {'A':1, 'C':2, 'G':3, 'T':4}
ip_rev = {1: 'A', 2: 'C', 3: 'G', 4: 'T'}
def solution(S, P, Q):
ret = []
N, M = len(S), len(P)
counter = [[0,0,0,0] for _ in range(N)]
for idx, c in enumerate(S):
counter[idx] = deepcopy(counter[idx-1])
counter[idx][ip[c]-1] += 1
# print(ip.values().index(0))
counter.append([0,0,0,0])
for idx in range(M):
start, end = P[idx]-1, Q[idx]
if start == end:
ret.append(ip[S[start]])
else:
for i in range(4):
if counter[end][i] - counter[start][i] > 0:
ret.append(i+1)
break
return ret
['AC', [0, 0, 1], [0, 1, 1]]
['TC', [0, 0, 1], [0, 1, 1]]
function result: [1, 1, 2]
function result: [4, 2, 2]
from copy import deepcopy
ip = {'A':1, 'C':2, 'G':3, 'T':4}
ip_rev = {1: 'A', 2: 'C', 3: 'G', 4: 'T'}
def solution(S, P, Q):
ret = []
N, M = len(S), len(P)
counter = [[0,0,0,0] for _ in range(N)]
for idx, c in enumerate(S):
counter[idx] = deepcopy(counter[idx-1])
counter[idx][ip[c]-1] += 1
# print(ip.values().index(0))
counter.append([0,0,0,0])
for idx in range(M):
start, end = P[idx]-1, Q[idx]
if start == end:
ret.append(ip[S[start]])
else:
for i in range(4):
if counter[end][i] - counter[start][i] > 0:
ret.append(i+1)
break
return ret
The following issues have been detected: timeout errors.
GGGGGG..??..GGGGGG..??..GGGGGG
running time: 0.748 sec., time limit: 0.432 sec.