A non-empty array A consisting of N integers is given.
A peak is an array element which is larger than its neighbours. More precisely, it is an index P such that 0 < P < N − 1 and A[P − 1] < A[P] > A[P + 1].
For example, the following array A:
A[0] = 1 A[1] = 5 A[2] = 3 A[3] = 4 A[4] = 3 A[5] = 4 A[6] = 1 A[7] = 2 A[8] = 3 A[9] = 4 A[10] = 6 A[11] = 2has exactly four peaks: elements 1, 3, 5 and 10.
You are going on a trip to a range of mountains whose relative heights are represented by array A, as shown in a figure below. You have to choose how many flags you should take with you. The goal is to set the maximum number of flags on the peaks, according to certain rules.
Flags can only be set on peaks. What's more, if you take K flags, then the distance between any two flags should be greater than or equal to K. The distance between indices P and Q is the absolute value |P − Q|.
For example, given the mountain range represented by array A, above, with N = 12, if you take:
- two flags, you can set them on peaks 1 and 5;
- three flags, you can set them on peaks 1, 5 and 10;
- four flags, you can set only three flags, on peaks 1, 5 and 10.
You can therefore set a maximum of three flags in this case.
Write a function:
class Solution { public int solution(int[] A); }
that, given a non-empty array A of N integers, returns the maximum number of flags that can be set on the peaks of the array.
For example, the following array A:
A[0] = 1 A[1] = 5 A[2] = 3 A[3] = 4 A[4] = 3 A[5] = 4 A[6] = 1 A[7] = 2 A[8] = 3 A[9] = 4 A[10] = 6 A[11] = 2the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..400,000];
- each element of array A is an integer within the range [0..1,000,000,000].
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
int[] peaks = new int[A.length];
int peakStart = 0;
int peakEnd = 0;
//Find peaks
//we don't want to traverse the array where peaks hasn't started, yet
//or where peaks doesn't occur any more.
//Therefore, find start and end points of the peak as well.
for(int i = 1; i < A.length-1; i++) {
if(A[i-1] < A[i] && A[i+1] < A[i]) {
peaks[i] = 1;
peakEnd = i + 1;
}
if(peakStart == 0) {
peakStart = i;
}
}
int x = 1;
//the maximum number of flags can be √N
int limit = (int)Math.ceil(Math.sqrt(A.length));
int prevPeak = 0;
int counter = 0;
int max = Integer.MIN_VALUE;
while(x <= limit) {
counter = 0;
prevPeak = 0;
for(int y = peakStart; y < peakEnd; y++) {
//find the peak points when we have x number of flags
if(peaks[y] == 1 && (prevPeak == 0 || x <= (y - prevPeak))) {
counter++;
prevPeak = y;
}
if(counter == x ) {
break;
}
}
//if the number of flags set on the peaks starts to reduce stop searching.
if(counter <= max) {
return max;
}
max = Math.max(max, counter);
x++;
}
return max;
}
}
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
int[] peaks = new int[A.length];
int peakStart = 0;
int peakEnd = 0;
//Find peaks
//we don't want to traverse the array where peaks hasn't started, yet
//or where peaks doesn't occur any more.
//Therefore, find start and end points of the peak as well.
for(int i = 1; i < A.length-1; i++) {
if(A[i-1] < A[i] && A[i+1] < A[i]) {
peaks[i] = 1;
peakEnd = i + 1;
}
if(peakStart == 0) {
peakStart = i;
}
}
int x = 1;
//the maximum number of flags can be √N
int limit = (int)Math.ceil(Math.sqrt(A.length));
int prevPeak = 0;
int counter = 0;
int max = Integer.MIN_VALUE;
while(x <= limit) {
counter = 0;
prevPeak = 0;
for(int y = peakStart; y < peakEnd; y++) {
//find the peak points when we have x number of flags
if(peaks[y] == 1 && (prevPeak == 0 || x <= (y - prevPeak))) {
counter++;
prevPeak = y;
}
if(counter == x ) {
break;
}
}
//if the number of flags set on the peaks starts to reduce stop searching.
if(counter <= max) {
return max;
}
max = Math.max(max, counter);
x++;
}
return max;
}
}
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
int[] peaks = new int[A.length];
int peakStart = 0;
int peakEnd = 0;
//Find peaks
//we don't want to traverse the array where peaks hasn't started, yet
//or where peaks doesn't occur any more.
//Therefore, find start and end points of the peak as well.
for(int i = 1; i < A.length-1; i++) {
if(A[i-1] < A[i] && A[i+1] < A[i]) {
peaks[i] = 1;
peakEnd = i + 1;
}
if(peakStart == 0) {
peakStart = i;
}
}
int x = 1;
//the maximum number of flags can be √N
int limit = (int)Math.ceil(Math.sqrt(A.length));
int prevPeak = 0;
int counter = 0;
int max = Integer.MIN_VALUE;
while(x <= limit) {
counter = 0;
prevPeak = 0;
for(int y = peakStart; y < peakEnd; y++) {
//find the peak points when we have x number of flags
if(peaks[y] == 1 && (prevPeak == 0 || x <= (y - prevPeak))) {
counter++;
prevPeak = y;
}
if(counter == x ) {
break;
}
}
//if the number of flags set on the peaks starts to reduce stop searching.
if(counter <= max) {
return max;
}
max = Math.max(max, counter);
x++;
}
return max;
}
}
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
int[] peaks = new int[A.length];
int peakStart = 0;
int peakEnd = 0;
//Find peaks
//we don't want to traverse the array where peaks hasn't started, yet
//or where peaks doesn't occur any more.
//Therefore, find start and end points of the peak as well.
for(int i = 1; i < A.length-1; i++) {
if(A[i-1] < A[i] && A[i+1] < A[i]) {
peaks[i] = 1;
peakEnd = i + 1;
}
if(peakStart == 0) {
peakStart = i;
}
}
int x = 1;
//the maximum number of flags can be √N
int limit = (int)Math.ceil(Math.sqrt(A.length));
int prevPeak = 0;
int counter = 0;
int max = Integer.MIN_VALUE;
while(x <= limit) {
counter = 0;
prevPeak = 0;
for(int y = peakStart; y < peakEnd; y++) {
//find the peak points when we have x number of flags
if(peaks[y] == 1 && (prevPeak == 0 || x <= (y - prevPeak))) {
counter++;
prevPeak = y;
}
if(counter == x ) {
break;
}
}
//if the number of flags set on the peaks starts to reduce stop searching.
if(counter <= max) {
return max;
}
max = Math.max(max, counter);
x++;
}
return max;
}
}
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
int[] peaks = new int[A.length];
int peakStart = 0;
int peakEnd = 0;
//Find peaks
//we don't want to traverse the array where peaks hasn't started, yet
//or where peaks doesn't occur any more.
//Therefore, find start and end points of the peak as well.
for(int i = 1; i < A.length-1; i++) {
if(A[i-1] < A[i] && A[i+1] < A[i]) {
peaks[i] = 1;
peakEnd = i + 1;
}
if(peakStart == 0) {
peakStart = i;
}
}
int x = 1;
//the maximum number of flags can be √N
int limit = (int)Math.ceil(Math.sqrt(A.length));
int prevPeak = 0;
int counter = 0;
int max = Integer.MIN_VALUE;
while(x <= limit) {
counter = 0;
prevPeak = 0;
for(int y = peakStart; y < peakEnd; y++) {
//find the peak points when we have x number of flags
if(peaks[y] == 1 && (prevPeak == 0 || x <= (y - prevPeak))) {
counter++;
prevPeak = y;
}
//
if(counter == x ) {
break;
}
}
//if the number of flags set on the peaks starts to reduce stop searching.
if(counter <= max) {
return max;
}
max = Math.max(max, counter);
x++;
}
return max;
}
}
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
int[] peaks = new int[A.length];
int peakStart = 0;
int peakEnd = 0;
//Find peaks
//we don't want to traverse the array where peaks hasn't started, yet
//or where peaks doesn't occur any more.
//Therefore, find start and end points of the peak as well.
for(int i = 1; i < A.length-1; i++) {
if(A[i-1] < A[i] && A[i+1] < A[i]) {
peaks[i] = 1;
peakEnd = i + 1;
}
if(peakStart == 0) {
peakStart = i;
}
}
int x = 1;
//the maximum number of flags can be √N
int limit = (int)Math.ceil(Math.sqrt(A.length));
int prevPeak = 0;
int counter = 0;
int max = Integer.MIN_VALUE;
while(x <= limit) {
counter = 0;
prevPeak = 0;
for(int y = peakStart; y < peakEnd; y++) {
//find the peak points when we have x number of flags
if(peaks[y] == 1 && (prevPeak == 0 || x <= (y - prevPeak))) {
counter++;
prevPeak = y;
}
//if the
if(counter == x ) {
break;
}
}
//if the number of flags set on the peaks starts to reduce stop searching.
if(counter <= max) {
return max;
}
max = Math.max(max, counter);
x++;
}
return max;
}
}
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
int[] peaks = new int[A.length];
int peakStart = 0;
int peakEnd = 0;
//Find peaks
//we don't want to traverse the array where peaks hasn't started, yet
//or where peaks doesn't occur any more.
//Therefore, find start and end points of the peak as well.
for(int i = 1; i < A.length-1; i++) {
if(A[i-1] < A[i] && A[i+1] < A[i]) {
peaks[i] = 1;
peakEnd = i + 1;
}
if(peakStart == 0) {
peakStart = i;
}
}
int x = 1;
//the maximum number of flags can be √N
int limit = (int)Math.ceil(Math.sqrt(A.length));
int prevPeak = 0;
int counter = 0;
int max = Integer.MIN_VALUE;
while(x <= limit) {
counter = 0;
prevPeak = 0;
for(int y = peakStart; y < peakEnd; y++) {
//find the peak points when we have x number of flags
if(peaks[y] == 1 && (prevPeak == 0 || x <= (y - prevPeak))) {
counter++;
prevPeak = y;
}
//if the number of flags we set on reached the
if(counter == x ) {
break;
}
}
//if the number of flags set on the peaks starts to reduce stop searching.
if(counter <= max) {
return max;
}
max = Math.max(max, counter);
x++;
}
return max;
}
}
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
int[] peaks = new int[A.length];
int peakStart = 0;
int peakEnd = 0;
//Find peaks
//we don't want to traverse the array where peaks hasn't started, yet
//or where peaks doesn't occur any more.
//Therefore, find start and end points of the peak as well.
for(int i = 1; i < A.length-1; i++) {
if(A[i-1] < A[i] && A[i+1] < A[i]) {
peaks[i] = 1;
peakEnd = i + 1;
}
if(peakStart == 0) {
peakStart = i;
}
}
int x = 1;
//the maximum number of flags can be √N
int limit = (int)Math.ceil(Math.sqrt(A.length));
int prevPeak = 0;
int counter = 0;
int max = Integer.MIN_VALUE;
while(x <= limit) {
counter = 0;
prevPeak = 0;
for(int y = peakStart; y < peakEnd; y++) {
//find the peak points when we have x number of flags
if(peaks[y] == 1 && (prevPeak == 0 || x <= (y - prevPeak))) {
counter++;
prevPeak = y;
}
//If we don't have any more fl
if(counter == x ) {
break;
}
}
//if the number of flags set on the peaks starts to reduce stop searching.
if(counter <= max) {
return max;
}
max = Math.max(max, counter);
x++;
}
return max;
}
}
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
int[] peaks = new int[A.length];
int peakStart = 0;
int peakEnd = 0;
//Find peaks
//we don't want to traverse the array where peaks hasn't started, yet
//or where peaks doesn't occur any more.
//Therefore, find start and end points of the peak as well.
for(int i = 1; i < A.length-1; i++) {
if(A[i-1] < A[i] && A[i+1] < A[i]) {
peaks[i] = 1;
peakEnd = i + 1;
}
if(peakStart == 0) {
peakStart = i;
}
}
int x = 1;
//the maximum number of flags can be √N
int limit = (int)Math.ceil(Math.sqrt(A.length));
int prevPeak = 0;
int counter = 0;
int max = Integer.MIN_VALUE;
while(x <= limit) {
counter = 0;
prevPeak = 0;
for(int y = peakStart; y < peakEnd; y++) {
//find the peak points when we have x number of flags
if(peaks[y] == 1 && (prevPeak == 0 || x <= (y - prevPeak))) {
counter++;
prevPeak = y;
}
//If we don't have any more flags stop.
if(counter == x ) {
break;
}
}
//if the number of flags set on the peaks starts to reduce stop searching.
if(counter <= max) {
return max;
}
max = Math.max(max, counter);
x++;
}
return max;
}
}
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
int[] peaks = new int[A.length];
int peakStart = 0;
int peakEnd = 0;
//Find peaks
//we don't want to traverse the array where peaks hasn't started, yet
//or where peaks doesn't occur any more.
//Therefore, find start and end points of the peak as well.
for(int i = 1; i < A.length-1; i++) {
if(A[i-1] < A[i] && A[i+1] < A[i]) {
peaks[i] = 1;
peakEnd = i + 1;
}
if(peakStart == 0) {
peakStart = i;
}
}
int x = 1;
//the maximum number of flags can be √N
int limit = (int)Math.ceil(Math.sqrt(A.length));
int prevPeak = 0;
int counter = 0;
int max = Integer.MIN_VALUE;
while(x <= limit) {
counter = 0;
prevPeak = 0;
for(int y = peakStart; y < peakEnd; y++) {
//find the peak points when we have x number of flags
if(peaks[y] == 1 && (prevPeak == 0 || x <= (y - prevPeak))) {
counter++;
prevPeak = y;
}
//If we don't have any more flags stop.
if(counter == x ) {
break;
}
}
//if the number of flags set on the peaks starts to reduce stop searching.
if(counter <= max) {
return max;
}
//
max = Math.max(max, counter);
x++;
}
return max;
}
}
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
int[] peaks = new int[A.length];
int peakStart = 0;
int peakEnd = 0;
//Find peaks
//we don't want to traverse the array where peaks hasn't started, yet
//or where peaks doesn't occur any more.
//Therefore, find start and end points of the peak as well.
for(int i = 1; i < A.length-1; i++) {
if(A[i-1] < A[i] && A[i+1] < A[i]) {
peaks[i] = 1;
peakEnd = i + 1;
}
if(peakStart == 0) {
peakStart = i;
}
}
int x = 1;
//the maximum number of flags can be √N
int limit = (int)Math.ceil(Math.sqrt(A.length));
int prevPeak = 0;
int counter = 0;
int max = Integer.MIN_VALUE;
while(x <= limit) {
counter = 0;
prevPeak = 0;
for(int y = peakStart; y < peakEnd; y++) {
//find the peak points when we have x number of flags
if(peaks[y] == 1 && (prevPeak == 0 || x <= (y - prevPeak))) {
counter++;
prevPeak = y;
}
//If we don't have any more flags stop.
if(counter == x ) {
break;
}
}
//if the number of flags set on the peaks starts to reduce stop searching.
if(counter <= max) {
return max;
}
//
max = counter;
x++;
}
return max;
}
}
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
int[] peaks = new int[A.length];
int peakStart = 0;
int peakEnd = 0;
//Find peaks
//we don't want to traverse the array where peaks hasn't started, yet
//or where peaks doesn't occur any more.
//Therefore, find start and end points of the peak as well.
for(int i = 1; i < A.length-1; i++) {
if(A[i-1] < A[i] && A[i+1] < A[i]) {
peaks[i] = 1;
peakEnd = i + 1;
}
if(peakStart == 0) {
peakStart = i;
}
}
int x = 1;
//the maximum number of flags can be √N
int limit = (int)Math.ceil(Math.sqrt(A.length));
int prevPeak = 0;
int counter = 0;
int max = Integer.MIN_VALUE;
while(x <= limit) {
counter = 0;
prevPeak = 0;
for(int y = peakStart; y < peakEnd; y++) {
//find the peak points when we have x number of flags
if(peaks[y] == 1 && (prevPeak == 0 || x <= (y - prevPeak))) {
counter++;
prevPeak = y;
}
//If we don't have any more flags stop.
if(counter == x ) {
break;
}
}
//if the number of flags set on the peaks starts to reduce stop searching.
if(counter <= max) {
return max;
}
//Keep the maximum number
max = counter;
x++;
}
return max;
}
}
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
int[] peaks = new int[A.length];
int peakStart = 0;
int peakEnd = 0;
//Find peaks
//we don't want to traverse the array where peaks hasn't started, yet
//or where peaks doesn't occur any more.
//Therefore, find start and end points of the peak as well.
for(int i = 1; i < A.length-1; i++) {
if(A[i-1] < A[i] && A[i+1] < A[i]) {
peaks[i] = 1;
peakEnd = i + 1;
}
if(peakStart == 0) {
peakStart = i;
}
}
int x = 1;
//the maximum number of flags can be √N
int limit = (int)Math.ceil(Math.sqrt(A.length));
int prevPeak = 0;
int counter = 0;
int max = Integer.MIN_VALUE;
while(x <= limit) {
counter = 0;
prevPeak = 0;
for(int y = peakStart; y < peakEnd; y++) {
//find the peak points when we have x number of flags
if(peaks[y] == 1 && (prevPeak == 0 || x <= (y - prevPeak))) {
counter++;
prevPeak = y;
}
//If we don't have any more flags stop.
if(counter == x ) {
break;
}
}
//if the number of flags set on the peaks starts to reduce stop searching.
if(counter <= max) {
return max;
}
//Keep the maximum number of flags we set on.
max = counter;
x++;
}
return max;
}
}
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
int[] peaks = new int[A.length];
int peakStart = 0;
int peakEnd = 0;
//Find peaks
//we don't want to traverse the array where peaks hasn't started, yet
//or where peaks doesn't occur any more.
//Therefore, find start and end points of the peak as well.
for(int i = 1; i < A.length-1; i++) {
if(A[i-1] < A[i] && A[i+1] < A[i]) {
peaks[i] = 1;
peakEnd = i + 1;
}
if(peakStart == 0) {
peakStart = i;
}
}
int x = 1;
//the maximum number of flags can be √N
int limit = (int)Math.ceil(Math.sqrt(A.length));
int prevPeak = 0;
int counter = 0;
int max = Integer.MIN_VALUE;
while(x <= limit) {
counter = 0;
prevPeak = 0;
for(int y = peakStart; y < peakEnd; y++) {
//find the peak points when we have x number of flags
if(peaks[y] == 1 && (prevPeak == 0 || x <= (y - prevPeak))) {
counter++;
prevPeak = y;
}
//If we don't have any more flags stop.
if(counter == x ) {
break;
}
}
//if the number of flags set on the peaks starts to reduce stop searching.
if(counter <= max) {
return max;
}
//Keep the maximum number of flags we set on.
max = counter;
x++;
}
return max;
}
}
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
int[] peaks = new int[A.length];
int peakStart = 0;
int peakEnd = 0;
//Find peaks
//we don't want to traverse the array where peaks hasn't started, yet
//or where peaks doesn't occur any more.
//Therefore, find start and end points of the peak as well.
for(int i = 1; i < A.length-1; i++) {
if(A[i-1] < A[i] && A[i+1] < A[i]) {
peaks[i] = 1;
peakEnd = i + 1;
}
if(peakStart == 0) {
peakStart = i;
}
}
int x = 1;
//the maximum number of flags can be √N
int limit = (int)Math.ceil(Math.sqrt(A.length));
int prevPeak = 0;
int counter = 0;
int max = Integer.MIN_VALUE;
while(x <= limit) {
counter = 0;
prevPeak = 0;
for(int y = peakStart; y < peakEnd; y++) {
//find the peak points when we have x number of flags
if(peaks[y] == 1 && (prevPeak == 0 || x <= (y - prevPeak))) {
counter++;
prevPeak = y;
}
//If we don't have any more flags stop.
if(counter == x ) {
break;
}
}
//if the number of flags set on the peaks starts to reduce stop searching.
if(counter <= max) {
return max;
}
//Keep the maximum number of flags we set on.
max = counter;
x++;
}
return max;
}
}
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
int[] peaks = new int[A.length];
int peakStart = 0;
int peakEnd = 0;
//Find peaks
//we don't want to traverse the array where peaks hasn't started, yet
//or where peaks doesn't occur any more.
//Therefore, find start and end points of the peak as well.
for(int i = 1; i < A.length-1; i++) {
if(A[i-1] < A[i] && A[i+1] < A[i]) {
peaks[i] = 1;
peakEnd = i + 1;
}
if(peakStart == 0) {
peakStart = i;
}
}
int x = 1;
//the maximum number of flags can be √N
int limit = (int)Math.ceil(Math.sqrt(A.length));
int prevPeak = 0;
int counter = 0;
int max = Integer.MIN_VALUE;
while(x <= limit) {
counter = 0;
prevPeak = 0;
for(int y = peakStart; y < peakEnd; y++) {
//find the peak points when we have x number of flags
if(peaks[y] == 1 && (prevPeak == 0 || x <= (y - prevPeak))) {
counter++;
prevPeak = y;
}
//If we don't have any more flags stop.
if(counter == x ) {
break;
}
}
//if the number of flags set on the peaks starts to reduce stop searching.
if(counter <= max) {
return max;
}
//Keep the maximum number of flags we set on.
max = counter;
x++;
}
return max;
}
}
The solution obtained perfect score.