Tasks Details
easy
1.
MaxSliceSum
Find a maximum sum of a compact subsequence of array elements.
Task Score
100%
Correctness
100%
Performance
100%
Task description
A non-empty array A consisting of N integers is given. A pair of integers (P, Q), such that 0 ≤ P ≤ Q < N, is called a slice of array A. The sum of a slice (P, Q) is the total of A[P] + A[P+1] + ... + A[Q].
Write a function:
class Solution { public int solution(int[] A); }
that, given an array A consisting of N integers, returns the maximum sum of any slice of A.
For example, given array A such that:
A[0] = 3 A[1] = 2 A[2] = -6 A[3] = 4 A[4] = 0the function should return 5 because:
- (3, 4) is a slice of A that has sum 4,
- (2, 2) is a slice of A that has sum −6,
- (0, 1) is a slice of A that has sum 5,
- no other slice of A has sum greater than (0, 1).
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [1..1,000,000];
- each element of array A is an integer within the range [−1,000,000..1,000,000];
- the result will be an integer within the range [−2,147,483,648..2,147,483,647].
Copyright 2009–2025 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.
Solution
Programming language used Java 8
Time spent on task 4 minutes
Notes
not defined yet
Code: 14:00:13 UTC,
java,
autosave
Code: 14:00:22 UTC,
java,
verify,
result: Failed
Analysis
Compile error
Solution.java:10: error: missing return statement } ^ 1 error
Code: 14:00:31 UTC,
java,
verify,
result: Failed
Analysis
Compile error
Solution.java:1: error: class, interface, or enum expected mport java.util.*; ^ 1 error
Code: 14:00:38 UTC,
java,
verify,
result: Passed
import java.util.*;
class Solution {
public int solution(int[] A) {
int maxSlice = A[0];
int maxSliceSum = A[0];
for (int i=1; i<A.length; i++) {
maxSlice = Math.max(0, maxSlice + A[i]);
maxSliceSum = Math.max(maxSliceSum, maxSlice);
}
return maxSliceSum;
}
}
User test case 1:
[-2, 1]
User test case 2:
[-10]
Analysis
Code: 14:02:35 UTC,
java,
verify,
result: Passed
import java.util.*;
class Solution {
public int solution(int[] A) {
int maxSlice = A[0];
int maxSliceSum = A[0];
for (int i=1; i<A.length; i++) {
maxSlice = Math.max(0, maxSlice + A[i]);
maxSliceSum = Math.max(maxSliceSum, maxSlice);
}
return maxSliceSum;
}
}
User test case 1:
[-2, 1]
User test case 2:
[-10]
Analysis
Code: 14:03:23 UTC,
java,
verify,
result: Passed
import java.util.*;
class Solution {
public int solution(int[] A) {
int maxSlice = A[0];
int maxSliceSum = A[0];
for (int i=1; i<A.length; i++) {
maxSlice = Math.max(A[i], maxSlice + A[i]);
maxSliceSum = Math.max(maxSliceSum, maxSlice);
}
return maxSliceSum;
}
}
User test case 1:
[-2, 1]
User test case 2:
[-10]
Analysis
Code: 14:03:35 UTC,
java,
verify,
result: Passed
import java.util.*;
class Solution {
public int solution(int[] A) {
int maxSlice = A[0];
int maxSliceSum = A[0];
for (int i=1; i<A.length; i++) {
maxSlice = Math.max(A[i], maxSlice + A[i]);
maxSliceSum = Math.max(maxSliceSum, maxSlice);
}
return maxSliceSum;
}
}
User test case 1:
[-2, 1]
User test case 2:
[-10]
Analysis
Code: 14:03:39 UTC,
java,
final,
score:
100
Analysis summary
The solution obtained perfect score.
Analysis
Detected time complexity:
O(N)
expand all
Correctness tests
1.
0.004 s
OK
2.
0.004 s
OK
3.
0.004 s
OK
1.
0.004 s
OK
2.
0.004 s
OK
3.
0.008 s
OK
4.
0.004 s
OK
5.
0.004 s
OK
6.
0.008 s
OK
7.
0.008 s
OK
8.
0.004 s
OK
9.
0.004 s
OK
1.
0.004 s
OK
2.
0.004 s
OK
3.
0.008 s
OK
4.
0.004 s
OK
5.
0.004 s
OK
6.
0.004 s
OK
7.
0.008 s
OK
8.
0.008 s
OK
9.
0.008 s
OK
10.
0.008 s
OK
11.
0.004 s
OK
12.
0.008 s
OK
13.
0.008 s
OK
14.
0.004 s
OK
15.
0.008 s
OK
16.
0.008 s
OK
17.
0.004 s
OK
18.
0.004 s
OK
19.
0.004 s
OK
20.
0.004 s
OK
21.
0.004 s
OK
22.
0.004 s
OK
23.
0.008 s
OK
24.
0.008 s
OK
25.
0.004 s
OK
26.
0.004 s
OK
27.
0.008 s
OK
1.
0.004 s
OK
1.
0.004 s
OK
1.
0.004 s
OK
1.
0.008 s
OK
1.
0.004 s
OK