You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
function solution(K, M, A);
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
/*
K = numberOfBlocks
M = maxNumber
A = array
*/
function solution(numberOfBlocks, maxNumber, array) {
let begin = array.reduce((a, b) => (a + b), 0); // Calculate total sum of A
// console.log("total sum of A: ", begin);
begin = Math.ceil(begin / numberOfBlocks); // Calculate the mean of each theoretical block
// console.log('Math.ceil(begin / numberOfBlocks): ', begin);
begin = Math.max(begin, Math.max(...array)); // Set begin to the highest number in array if > than the mean
// console.log('Math.max(begin, Math.max(...array)): ', begin);
// In short: begin is now the smallest possible block sum
// Calculate largest possible block sum
let end = begin + maxNumber + 1;
// console.log("end: ", end);
var result = 0;
while (begin <= end) {
// Calculate the midpoint, which is our result guess
const midpoint = Math.floor((begin + end) / 2);
// console.log("midpoint: ", midpoint);
let currentBlockSum = 0;
let block = 1;
for (let number of array) {
currentBlockSum += number;
// console.log("currentBlockSum: ", currentBlockSum);
// If currentBlockSum > midpoint means that we are
// in a different block...
if (currentBlockSum > midpoint) {
// console.log("currentBlockSum > midpoint");
++block;
// console.log("block: ", block);
// ...so we reset sum with the current number
currentBlockSum = number;
// console.log("currentBlockSum: ", currentBlockSum);
// but if we are out of blocks, our guess (midpoint) is incorrect
// and we will have to adjust it
if (block > numberOfBlocks) {
// console.log("block > numberOfBlocks before break");
// console.log("block: ", block);
// console.log("break");
break;
}
}
}
// If we are out of blocks, it means that our guess for midpoint is too small.
if (block > numberOfBlocks) {
// console.log("block > numberOfBlocks before begin");
begin = midpoint + 1;
// console.log("begin: ", begin);
}
// Else, it's too big.
else {
// console.log("block <= numberOfBlocks");
result = midpoint;
// console.log("result: ", result);
end = midpoint - 1;
// console.log("end: ", end);
}
}
// console.log("result: ", result);
return result;
}
/*
K = numberOfBlocks
M = maxNumber
A = array
*/
function solution(numberOfBlocks, maxNumber, array) {
let begin = array.reduce((a, b) => (a + b), 0); // Calculate total sum of A
// console.log("total sum of A: ", begin);
begin = Math.ceil(begin / numberOfBlocks); // Calculate the mean of each theoretical block
// console.log('Math.ceil(begin / numberOfBlocks): ', begin);
begin = Math.max(begin, Math.max(...array)); // Set begin to the highest number in array if > than the mean
// console.log('Math.max(begin, Math.max(...array)): ', begin);
// In short: begin is now the smallest possible block sum
// Calculate largest possible block sum
let end = begin + maxNumber + 1;
// console.log("end: ", end);
var result = 0;
while (begin <= end) {
// Calculate the midpoint, which is our result guess
const midpoint = Math.floor((begin + end) / 2);
// console.log("midpoint: ", midpoint);
let currentBlockSum = 0;
let block = 1;
for (let number of array) {
currentBlockSum += number;
// console.log("currentBlockSum: ", currentBlockSum);
// If currentBlockSum > midpoint means that we are
// in a different block...
if (currentBlockSum > midpoint) {
// console.log("currentBlockSum > midpoint");
++block;
// console.log("block: ", block);
// ...so we reset sum with the current number
currentBlockSum = number;
// console.log("currentBlockSum: ", currentBlockSum);
// but if we are out of blocks, our guess (midpoint) is incorrect
// and we will have to adjust it
if (block > numberOfBlocks) {
// console.log("block > numberOfBlocks before break");
// console.log("block: ", block);
// console.log("break");
break;
}
}
}
// If we are out of blocks, it means that our guess for midpoint is too small.
if (block > numberOfBlocks) {
// console.log("block > numberOfBlocks before begin");
begin = midpoint + 1;
// console.log("begin: ", begin);
}
// Else, it's too big.
else {
// console.log("block <= numberOfBlocks");
result = midpoint;
// console.log("result: ", result);
end = midpoint - 1;
// console.log("end: ", end);
}
}
// console.log("result: ", result);
return result;
}
/*
K = numberOfBlocks
M = maxNumber
A = array
*/
function solution(numberOfBlocks, maxNumber, array) {
let begin = array.reduce((a, b) => (a + b), 0); // Calculate total sum of A
// console.log("total sum of A: ", begin);
begin = Math.ceil(begin / numberOfBlocks); // Calculate the mean of each theoretical block
// console.log('Math.ceil(begin / numberOfBlocks): ', begin);
begin = Math.max(begin, Math.max(...array)); // Set begin to the highest number in array if > than the mean
// console.log('Math.max(begin, Math.max(...array)): ', begin);
// In short: begin is now the smallest possible block sum
// Calculate largest possible block sum
let end = begin + maxNumber + 1;
// console.log("end: ", end);
var result = 0;
while (begin <= end) {
// Calculate the midpoint, which is our result guess
const midpoint = Math.floor((begin + end) / 2);
// console.log("midpoint: ", midpoint);
let currentBlockSum = 0;
let block = 1;
for (let number of array) {
currentBlockSum += number;
// console.log("currentBlockSum: ", currentBlockSum);
// If currentBlockSum > midpoint means that we are
// in a different block...
if (currentBlockSum > midpoint) {
// console.log("currentBlockSum > midpoint");
++block;
// console.log("block: ", block);
// ...so we reset sum with the current number
currentBlockSum = number;
// console.log("currentBlockSum: ", currentBlockSum);
// but if we are out of blocks, our guess (midpoint) is incorrect
// and we will have to adjust it
if (block > numberOfBlocks) {
// console.log("block > numberOfBlocks before break");
// console.log("block: ", block);
// console.log("break");
break;
}
}
}
// If we are out of blocks, it means that our guess for midpoint is too small.
if (block > numberOfBlocks) {
// console.log("block > numberOfBlocks before begin");
begin = midpoint + 1;
// console.log("begin: ", begin);
}
// Else, it's too big.
else {
// console.log("block <= numberOfBlocks");
result = midpoint;
// console.log("result: ", result);
end = midpoint - 1;
// console.log("end: ", end);
}
}
// console.log("result: ", result);
return result;
}
The solution obtained perfect score.