You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
class Solution { public int solution(int K, int M, int[] A); }
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
import Foundation
import Glibc
// you can write to stdout for debugging purposes, e.g.
// print("this is a debug message")
public func solution(_ K : Int, _ M : Int, _ A : inout [Int]) -> Int {
var low = A.max()!
var high = A.reduce(0, +)
if K == 1 { return high }
if K >= A.count { return low }
while low <= high {
let mid = (low + high) / 2
if isValid(A: A, maxBlockCount: K, maxBlockSize: mid) {
high = mid - 1
} else {
low = mid + 1
}
}
return low
}
func isValid(A: [Int], maxBlockCount: Int, maxBlockSize: Int) -> Bool {
var blockSum = 0
var blockCount = 0
for a in A {
if blockSum + a > maxBlockSize {
blockSum = a
blockCount += 1
} else {
blockSum += a
}
if blockCount >= maxBlockCount {
return false
}
}
return true
}
import Foundation
import Glibc
// you can write to stdout for debugging purposes, e.g.
// print("this is a debug message")
public func solution(_ K : Int, _ M : Int, _ A : inout [Int]) -> Int {
var low = A.max()!
var high = A.reduce(0, +)
if K == 1 { return high }
if K >= A.count { return low }
while low <= high {
let mid = (low + high) / 2
if isValid(A: A, maxBlockCount: K, maxBlockSize: mid) {
high = mid - 1
} else {
low = mid + 1
}
}
return low
}
func isValid(A: [Int], maxBlockCount: Int, maxBlockSize: Int) -> Bool {
var blockSum = 0
var blockCount = 0
for a in A {
if blockSum + a > maxBlockSize {
blockSum = a
blockCount += 1
} else {
blockSum += a
}
if blockCount >= maxBlockCount {
return false
}
}
return true
}
import Foundation
import Glibc
// you can write to stdout for debugging purposes, e.g.
// print("this is a debug message")
public func solution(_ K : Int, _ M : Int, _ A : inout [Int]) -> Int {
var low = A.max()!
var high = A.reduce(0, +)
if K == 1 { return high }
if K >= A.count { return low }
while low <= high {
let mid = (low + high) / 2
if isValid(A: A, maxBlockCount: K, maxBlockSize: mid) {
high = mid - 1
} else {
low = mid + 1
}
}
return low
}
func isValid(A: [Int], maxBlockCount: Int, maxBlockSize: Int) -> Bool {
var blockSum = 0
var blockCount = 0
for a in A {
if blockSum + a > maxBlockSize {
blockSum = a
blockCount += 1
} else {
blockSum += a
}
if blockCount >= maxBlockCount {
return false
}
}
return true
}
import Foundation
import Glibc
// you can write to stdout for debugging purposes, e.g.
// print("this is a debug message")
public func solution(_ K : Int, _ M : Int, _ A : inout [Int]) -> Int {
var low = A.max()!
var high = A.reduce(0, +)
if K == 1 { return high }
if K >= A.count { return low }
while low <= high {
let mid = (low + high) / 2
if isValid(A: A, maxBlockCount: K, maxBlockSize: mid) {
high = mid - 1
} else {
low = mid + 1
}
}
return low
}
func isValid(A: [Int], maxBlockCount: Int, maxBlockSize: Int) -> Bool {
var blockSum = 0
var blockCount = 0
for a in A {
if blockSum + a > maxBlockSize {
blockSum = a
blockCount += 1
} else {
blockSum += a
}
if blockCount >= maxBlockCount {
return false
}
}
return true
}
The solution obtained perfect score.