For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:
val(A, S) = |sum{ A[i]*S[i] for i = 0..N−1 }|
(Assume that the sum of zero elements equals zero.)
For a given array A, we are looking for such a sequence S that minimizes val(A,S).
Write a function:
class Solution { public int solution(int[] A); }
that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.
For example, given array:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = -2your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].
import java.util.*;
class Solution {
private int[] absA;
private int sum;
private Map<Integer, Integer> countMap = new HashMap<>();
private int[] subset;
public int solution(int[] A) {
this.absA = getAbs(A);
this.sum = getSum(absA);
this.countMap = getCountMap(absA);
this.subset = new int[Math.max(sum, 1)];
Arrays.fill(subset, -1);
subset[0] = 0;
for (int key : countMap.keySet()) {
for (int i=0; i<sum/2+1; i++) {
if (subset[i] >= 0) {
subset[i] = countMap.get(key);
} else if (i >= key && subset[i - key] > 0) {
subset[i] = subset[i - key] - 1;
}
}
}
int res = sum;
for (int i=0; i<sum/2+1; i++) {
if (subset[i] >= 0) {
res = Math.min(res, sum - i * 2);
}
}
return res;
}
private int[] getAbs(int[] A) {
int[] absA = new int[A.length];
for (int i=0; i<A.length; i++) {
absA[i] = Math.abs(A[i]);
}
return absA;
}
private int getSum(int[] A) {
int sum = 0;
for (int i=0; i<A.length; i++) {
sum += A[i];
}
return sum;
}
private Map<Integer, Integer> getCountMap(int[] A) {
Map<Integer, Integer> countMap = new HashMap<>();
for (int i=0; i<A.length; i++) {
countMap.put(A[i], countMap.getOrDefault(A[i], 0) + 1);
}
return countMap;
}
}
import java.util.*;
class Solution {
private int[] absA;
private int sum;
private Map<Integer, Integer> countMap = new HashMap<>();
private int[] subset;
public int solution(int[] A) {
this.absA = getAbs(A);
this.sum = getSum(absA);
this.countMap = getCountMap(absA);
this.subset = new int[Math.max(sum, 1)];
Arrays.fill(subset, -1);
subset[0] = 0;
for (int key : countMap.keySet()) {
for (int i=0; i<sum/2+1; i++) {
if (subset[i] >= 0) {
subset[i] = countMap.get(key);
} else if (i >= key && subset[i - key] > 0) {
subset[i] = subset[i - key] - 1;
}
}
}
int res = sum;
for (int i=0; i<sum/2+1; i++) {
if (subset[i] >= 0) {
res = Math.min(res, sum - i * 2);
}
}
return res;
}
private int[] getAbs(int[] A) {
int[] absA = new int[A.length];
for (int i=0; i<A.length; i++) {
absA[i] = Math.abs(A[i]);
}
return absA;
}
private int getSum(int[] A) {
int sum = 0;
for (int i=0; i<A.length; i++) {
sum += A[i];
}
return sum;
}
private Map<Integer, Integer> getCountMap(int[] A) {
Map<Integer, Integer> countMap = new HashMap<>();
for (int i=0; i<A.length; i++) {
countMap.put(A[i], countMap.getOrDefault(A[i], 0) + 1);
}
return countMap;
}
}
The solution obtained perfect score.