
Chapter 4

Counting elements

A numerical sequence can be stored in an array in various ways. In the standard approach,
the consecutive numbers a0, a1, . . . , an−1 are usually put into the corresponding consecutive
indices of the array:

A[0] = a0 A[1] = a1 . . . A[n − 1] = an−1

We can also store the data in a slightly different way, by making an array of counters. Each
number may be counted in the array by using an index that corresponds to the value of the
given number.

a0 a1 a2 a3 a4 a5

0 0 4 2 4 5

2 0 1 0 2 1count[]
0 1 2 3 4 5

Notice that we do not place elements directly into a cell; rather, we simply count their
occurrences. It is important that the array in which we count elements is sufficiently large.
If we know that all the elements are in the set {0, 1, . . . , m}, then the array used for counting
should be of size m + 1.

4.1: Counting elements — O(n + m).

1 def counting(A, m):
2 n = len(A)
3 count = [0] * (m + 1)
4 for k in xrange(n):
5 count[A[k]] += 1
6 return count

The limitation here may be available memory. Usually, we are not able to create arrays of
109 integers, because this would require more than one gigabyte of available memory.

Counting the number of negative integers can be done in two ways. The first method is
to add some big number to each value: so that, all values would be greater than or equal to
zero. That is, we shift the representation of zero by some arbitrary amount to accommodate
all the negative numbers we need. In the second method, we simply create a second array for
counting negative numbers.

c� Copyright 2020 by Codility Limited. All Rights Reserved. Unauthorized copying or publication pro-
hibited.

1



4.1. Exercise

Problem: You are given an integer m (1 � m � 1 000 000) and two non-empty, zero-indexed
arrays A and B of n integers, a0, a1, . . . , an−1 and b0, b1, . . . , bn−1 respectively (0 � ai, bi � m).

The goal is to check whether there is a swap operation which can be performed on these
arrays in such a way that the sum of elements in array A equals the sum of elements in
array B after the swap. By swap operation we mean picking one element from array A and
one element from array B and exchanging them.
Solution O(n2): The simplest method is to swap every pair of elements and calculate the
totals. Using that approach gives us O(n3) time complexity. A better approach is to calculate
the sums of elements at the beginning, and check only how the totals change during the swap
operation.

4.2: Swap the elements — O(n2).

1 def slow_solution(A, B, m):
2 n = len(A)
3 sum_a = sum(A)
4 sum_b = sum(B)
5 for i in xrange(n):
6 for j in xrange(n):
7 change = B[j] - A[i]
8 sum_a += change
9 sum_b -= change

10 if sum_a == sum_b:
11 return True
12 sum_a -= change
13 sum_b += change
14 return False

Solution O(n + m): The best approach is to count the elements of array A and calculate
the difference d between the sums of the elements of array A and B.

For every element of array B, we assume that we will swap it with some element from
array A. The difference d tells us the value from array A that we are interested in swapping,
because only one value will cause the two totals to be equal. The occurrence of this value can
be found in constant time from the array used for counting.

4.3: Swap the elements — O(n + m).

1 def fast_solution(A, B, m):
2 n = len(A)
3 sum_a = sum(A)
4 sum_b = sum(B)
5 d = sum_b - sum_a
6 if d % 2 == 1:
7 return False
8 d //= 2
9 count = counting(A, m)

10 for i in xrange(n):
11 if 0 <= B[i] - d and B[i] - d <= m and count[B[i] - d] > 0:
12 return True
13 return False

Every lesson will provide you with programming tasks at http://codility.com/programmers.

2


