
Chapter 11

Sieve of Eratosthenes

The Sieve of Eratosthenes is a very simple and popular technique for finding all the prime

numbers in the range from 2 to a given number n. The algorithm takes its name from the

process of sieving—in a simple way we remove multiples of consecutive numbers.

Initially, we have the set of all the numbers {2, 3, . . . , n}. At each step we choose the

smallest number in the set and remove all its multiples. Notice that every composite number

has a divisor of at most

Ô
n. In particular, it has a divisor which is a prime number. It

is su�cient to remove only multiples of prime numbers not exceeding

Ô
n. In this way, all

composite numbers will be removed.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

The above illustration shows steps of sieving for n = 17. The elements of the processed set

are in white, and removed composite numbers are in gray. First, we remove multiples of the

smallest element in the set, which is 2. The next element remaining in the set is 3, and we

also remove its multiples, and so on.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

The above algorithm can be slightly improved. Notice that we needn’t cross out multiples

of i which are less than i2
. Such multiples are of the form k · i, where k < i. These have

already been removed by one of the prime divisors of k. After this improvement, we obtain

the following implementation:

11.1: Sieve of Eratosthenes.

1 def sieve(n):

2 sieve = [True]

*

(n + 1)

3 sieve[0] = sieve[1] = False

4 i = 2

5 while (i

*

i <= n):

6 if (sieve[i]):

c• Copyright 2015 by Codility Limited. All Rights Reserved. Unauthorized copying or publication pro-

hibited.

1



7 k = i

*

i

8 while (k <= n):

9 sieve[k] = False

10 k += i

11 i += 1

12 return sieve

Let’s analyse the time complexity of the above algorithm. For each prime number p
j

˛
Ô

n
we cross out at most

n

pj
numbers, so we get the following number of operations:

n

2

+

n

3

+

n

5

+ . . . =

ÿ

pj˛
Ô

n

n

p
j

= n ·
ÿ

pj˛
Ô

n

1

p
j

(11.1)

The sum of the reciprocals of the primes p
j

˛ n equals asymptotically O(log log n). So the

overall time complexity of this algorithm is O(n log log n). The proof is not trivial, and is

beyond the scope of this article. An example proof can be found here.

11.1. Factorization

Factorization is the process of decomposition into prime factors. More precisely, for a given

number x we want to find primes p1, p2, . . . , p
k

whose product equals x.

Use of the sieve enables fast factorization. Let’s modify the sieve algorithm slightly. For

every crossed number we will remember the smallest prime that divides this number.

11.2: Preparing the array F for factorization.

1 def arrayF(n):

2 F = [0]

*

(n + 1)

3 i = 2

4 while (i

*

i <= n):

5 if (F[i] == 0):

6 k = i

*

i

7 while (k <= n):

8 if (F[k] == 0):

9 F[k] = i;

10 k += i

11 i += 1

12 return F

For example, take an array F with a value of n = 20:

0 0 2 0 2 0 2 3 2 0 2 0 2 3 2 0 2 0 2

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

With this approach we can factorize numbers very quickly. If we know that one of the prime

factors of x is p, then all the prime factors of x are p plus the decomposition of

x

p

.

11.3: Factorization of x — O(log x).

1 def factorization(x, F):

2 primeFactors = []

3 while (F[x] > 0):

4 primeFactors += [F[x]]

5 x /= F[x]

6 primeFactors += [x]

7 return primeFactors

2



Number x cannot have more than log x prime factors, because every prime factor is ˇ 2.

Factorization by the above method works in O(log x) time complexity. Note that consecutive

factors will be presented in non-decreasing order.

Every lesson will provide you with programming tasks at http://codility.com/programmers.

3


