
Count Bounded Slices

It’s time to show you how the Codility Challenge codenamed (Oxygenium) can be solved.
You can still give it a try, but no certificate will be granted. The problem asks you to calculate
the number of slices in which (max−min ¬ K). Such slices are described as being bounded.

Slow solution O(N 2)
For every index i we can find the largest index j ­ i such that (i, j) is a bounded slice. Any
slice with a larger value of j will not be bounded.

Using so called brute-force approach, we can check increasing indices, remembering the
minimum and the maximum values at all times.

1: Slow solution — O(N2).

1 def boundedSlicesSlow(K, A):
2 N = len(A)
3 result = 0
4 for i in xrange(N):
5 minimum = A[i]
6 maximum = A[i]
7 for j in xrange(i, N):
8 maximum = max(maximum, A[j])
9 minimum = min(minimum, A[j])

10 if maximum - minimum <= K:
11 result += 1
12 if result == maxINT: # maxINT = 10^9
13 return result
14 else:
15 break
16 return result

The time complexity of the above algorithm is O(N2).

Fast solution O(N log N)
Notice that if the slice (i, j) is bounded then every slice (i + 1, j), (i + 2, j), . . . , (j, j) is
bounded too. There is no need to check index j from the beginning. Let’s assume there is a
minMaxQuery function, which returns the difference between maximum and minimum values
in a given slice. The algorithm could appear as follows:

c© Copyright 2017 by Codility Limited. All Rights Reserved. Unauthorized copying or publication pro-
hibited.

1

http://codility.com/train


2: Fast solution — O(N log N).

1 def boundedSlicesFast(K, A):
2 N = len(A)
3 result = 0
4 j = 0
5 for i in xrange(N):
6 while (j < N):
7 if (minMaxQuery(i, j) <= K):
8 j += 1
9 else:

10 break
11 result += (j - i)
12 if result >= maxINT:
13 return maxINT
14 return result

There is a question of how to find the minimum and the maximum values in the slices. We can
use a popular Interval_tree data structure. Finding the minimum/maximum values works in
O(log N) time complexity. Thus, the time complexity of the above algorithm is O(N log N).

Golden solution O(N)
There is an even better way of solving this task. Questions about intervals take a particular
form: the interval crawls over the array and there is enough information to create a structure
similar to a queue, supporting operations such as inserting elements at one end, removing
them from the other end and finding maximum/minimum value. Let’s focus on finding the
maximum element (finding the minimum is analogical).

Let’s consider which elements can become maximal. Of course, if there is already an
element in the queue, and some bigger number is then inserted, then the previous element
will never be the maximum. Thus, we don’t need to remember its value. The numbers that
remain will form a non-increasing sequence, so finding the maximum element is a simple
matter of just taking the oldest element from the queue (in chronological order).

3: Golden solution — O(N).

1 def boundedSlicesGolden(K, A):
2 N = len(A)
3

4 maxQ = [0] * (N + 1)
5 posmaxQ = [0] * (N + 1)
6 minQ = [0] * (N + 1)
7 posminQ = [0] * (N + 1)
8

9 firstMax, lastMax = 0, -1
10 firstMin, lastMin = 0, -1
11 j, result = 0, 0
12

13 for i in xrange(N):
14 while (j < N):
15 # added new maximum element
16 while (lastMax >= firstMax and maxQ[lastMax] <= A[j]):
17 lastMax -= 1
18 lastMax += 1
19 maxQ[lastMax] = A[j]
20 posmaxQ[lastMax] = j
21

2

http://en.wikipedia.org/wiki/Interval_tree


22 # added new minimum element
23 while (lastMin >= firstMin and minQ[lastMin] >= A[j]):
24 lastMin -= 1
25 lastMin += 1
26 minQ[lastMin] = A[j]
27 posminQ[lastMin] = j
28

29 if (maxQ[firstMax] - minQ[firstMin] <= K):
30 j += 1
31 else:
32 break
33 result += (j - i)
34 if result >= maxINT:
35 return maxINT
36 if posminQ[firstMin] == i:
37 firstMin += 1
38 if posmaxQ[firstMax] == i:
39 firstMax += 1
40 return result

The time complexity is O(N), because each operation works in amortized constant time.

3


