cedility

Hlt the Number WE TEST CODERS

It’s time to show you how the Codility challenge code-named Rho|can be solved. You can still
give it a try, but no certificate will be granted. In this task we are looking for the shortest
sequence I1,...,Ty,, such that:

o 1'0:1,
e z, = A, and

o foreachi=1,...,n, z; = z; + x}, for some 0 < j, k <.

There are three basic programming techniques that can be applied in tasks of this type. From
the fastest and most limited to the slowest and most general, they are:

e greedy programming,
e dynamic programming, and

e back-tracking.

But which should be applied here?

Greedy solution

Let us start with a greedy approach. We can easily construct a sequence of logarithmic length
satisfying the above conditions, starting from its end. We start with x, = A. If x; is even,
then x; 1 = %. Otherwise z;_1 = 2; — 1 = z; — x1. For example, for A = 15 we obtain
[1,2,3,6,7,14,15].

Another greedy approach, producing sequences of the same length, is as follows. The
sequence starts with powers of 2: zg = 1,21 = 2,29 = 4,...,x; = 2¥, where 2571 > A and
2% < A. Let us consider a binary representation of A. There are at most k£ + 1 1s. So, in at
most k steps, we can sum up corresponding powers of 2 and obtain a complete sequence. For
example, for A = 15 we obtain [1,2,4,8,12,14, 15].

Both of the above approaches fail to produce the shortest possible sequences; for A = 15
we can take the sequence [1,2,3,6,12,15]. So, one should refrain from being greedy because
the greedy algorithm is incorrect. However, the approaches provide an upper bound on the
length of the shortest possible sequence: n < 2 - |[logy A]. On the other hand, such sequences
cannot grow faster than powers of 2, and x; < 2%; hence n > [logy A].

© Copyright 2017 by Codility Limited. All Rights Reserved. Unauthorized copying or publication pro-
hibited.


http://codility.com/programmers/challenges/rho2012

Dynamic solution

How about the dynamic approach? A natural parameterization of the problem is to calculate
the shortest sequences ending with a given integer B, for all B =1,2,..., A. For B = 1, such
a sequence comprises just one number: 1. For larger values of B we can use the sequences
computed for smaller values of B, and look for a sequence that contains both some number
x and B — z. The shortest such sequence can be extended by B and memorized. Such an
algorithm works in O(A? - log A) time. Unfortunately, it is also incorrect. For example, for
A = T7 it produces the sequence [1,2,3,6,9,11,22, 44,55, 77], whereas the shortest possible
sequence is [1,2,4,5,9,18,36,41, 77].

Back-tracking solution

The only approach that remains is back-tracking. This checks all possible sequences, and
hence is bound to be correct. Unfortunately, its running time is exponential (even in terms
of A). The actual cost depends on the number of sequences considered.

How can we limit the number of sequences to consider? One natural observation is that we
can limit ourselves to increasing sequences. Obviously, if any number appears in the sequence
more than once, it cannot be optimal. Moreover, any non-monotonic sequence, containing
different integers, can be rearranged in such a way that it becomes increasing.

Another optimization is to limit the length of considered sequences. We know that the
length does not exceed n < 2- |logy A], but for some numbers it can be smaller. In particular,
for powers of 2 we have n = logy A. So, we can start with a sequence built by one of the
greedy algorithms presented above, and look only for shorter sequences.

It is tempting to assume that each element of the sequence can be constructed as a sum
of the preceding element and some other element. This significantly reduces the number of
sequences to consider. On the one hand, such an assumption is incorrect; for example, the
shortest sequence for A = 125009 is:

[1,2,3,6,12,13,24, 48,96, 192, 384, 397, 781, 1 562, 3 124, 6 248, 6 261, 12 509)].

The number 13 is needed to obtain 397 and 6 261, but it is followed by 24, which is obtained
from 12 alone.

However, on the other hand, it is the smallest counterexample, and it is far beyond the
maximum value of A. So, this optimization is also acceptable.



