You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
int solution(int K, int M, int A[], int N);
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
int solution(int K, int M, vector<int> &A);
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
int solution(int K, int M, vector<int> &A);
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
class Solution { public int solution(int K, int M, int[] A); }
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
int solution(int K, int M, List<int> A);
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
func Solution(K int, M int, A []int) int
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
class Solution { public int solution(int K, int M, int[] A); }
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
class Solution { public int solution(int K, int M, int[] A); }
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
function solution(K, M, A);
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
fun solution(K: Int, M: Int, A: IntArray): Int
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
function solution(K, M, A)
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
Note: All arrays in this task are zero-indexed, unlike the common Lua convention. You can use #A to get the length of the array A.
You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
int solution(int K, int M, NSMutableArray *A);
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
function solution(K: longint; M: longint; A: array of longint; N: longint): longint;
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
function solution($K, $M, $A);
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
sub solution { my ($K, $M, @A) = @_; ... }
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
def solution(K, M, A)
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
def solution(k, m, a)
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
object Solution { def solution(k: Int, m: Int, a: Array[Int]): Int }
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
public func solution(_ K : Int, _ M : Int, _ A : inout [Int]) -> Int
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
function solution(K: number, M: number, A: number[]): number;
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].
You are given integers K, M and a non-empty array A consisting of N integers. Every element of the array is not greater than M.
You should divide this array into K blocks of consecutive elements. The size of the block is any integer between 0 and N. Every element of the array should belong to some block.
The sum of the block from X to Y equals A[X] + A[X + 1] + ... + A[Y]. The sum of empty block equals 0.
The large sum is the maximal sum of any block.
For example, you are given integers K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2The array can be divided, for example, into the following blocks:
- [2, 1, 5, 1, 2, 2, 2], [], [] with a large sum of 15;
- [2], [1, 5, 1, 2], [2, 2] with a large sum of 9;
- [2, 1, 5], [], [1, 2, 2, 2] with a large sum of 8;
- [2, 1], [5, 1], [2, 2, 2] with a large sum of 6.
The goal is to minimize the large sum. In the above example, 6 is the minimal large sum.
Write a function:
Private Function solution(K As Integer, M As Integer, A As Integer()) As Integer
that, given integers K, M and a non-empty array A consisting of N integers, returns the minimal large sum.
For example, given K = 3, M = 5 and array A such that:
A[0] = 2 A[1] = 1 A[2] = 5 A[3] = 1 A[4] = 2 A[5] = 2 A[6] = 2the function should return 6, as explained above.
Write an efficient algorithm for the following assumptions:
- N and K are integers within the range [1..100,000];
- M is an integer within the range [0..10,000];
- each element of array A is an integer within the range [0..M].