Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
int solution(int A[], int B[], int N);
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
int solution(vector<int> &A, vector<int> &B);
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
int solution(vector<int> &A, vector<int> &B);
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
class Solution { public int solution(int[] A, int[] B); }
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
int solution(List<int> A, List<int> B);
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
func Solution(A []int, B []int) int
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
class Solution { public int solution(int[] A, int[] B); }
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
class Solution { public int solution(int[] A, int[] B); }
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
function solution(A, B);
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
fun solution(A: IntArray, B: IntArray): Int
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
function solution(A, B)
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Note: All arrays in this task are zero-indexed, unlike the common Lua convention. You can use #A to get the length of the array A.
Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
int solution(NSMutableArray *A, NSMutableArray *B);
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
function solution(A: array of longint; B: array of longint; N: longint): longint;
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
function solution($A, $B);
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
sub solution { my ($A, $B) = @_; my @A = @$A; my @B = @$B; ... }
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
def solution(A, B)
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
def solution(a, b)
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
object Solution { def solution(a: Array[Int], b: Array[Int]): Int }
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
public func solution(_ A : inout [Int], _ B : inout [Int]) -> Int
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
function solution(A: number[], B: number[]): number;
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5 A[1] = 3 B[1] = 6 A[2] = 7 B[2] = 8 A[3] = 9 B[3] = 9 A[4] = 9 B[4] = 10The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
Private Function solution(A As Integer(), B As Integer()) As Integer
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
- N is an integer within the range [0..30,000];
- each element of arrays A and B is an integer within the range [0..1,000,000,000];
- A[I] ≤ B[I], for each I (0 ≤ I < N);
- B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).