You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
int solution(int A[], int B[], int N, int C[], int M);
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].
You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
int solution(vector<int> &A, vector<int> &B, vector<int> &C);
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].
You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
int solution(vector<int> &A, vector<int> &B, vector<int> &C);
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].
You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
class Solution { public int solution(int[] A, int[] B, int[] C); }
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].
You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
int solution(List<int> A, List<int> B, List<int> C);
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].
You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
func Solution(A []int, B []int, C []int) int
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].
You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
class Solution { public int solution(int[] A, int[] B, int[] C); }
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].
You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
class Solution { public int solution(int[] A, int[] B, int[] C); }
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].
You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
function solution(A, B, C);
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].
You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
fun solution(A: IntArray, B: IntArray, C: IntArray): Int
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].
You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
function solution(A, B, C)
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].
Note: All arrays in this task are zero-indexed, unlike the common Lua convention. You can use #A to get the length of the array A.
You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
int solution(NSMutableArray *A, NSMutableArray *B, NSMutableArray *C);
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].
You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
function solution(A: array of longint; B: array of longint; N: longint; C: array of longint; M: longint): longint;
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].
You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
function solution($A, $B, $C);
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].
You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
sub solution { my ($A, $B, $C) = @_; my @A = @$A; my @B = @$B; my @C = @$C; ... }
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].
You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
def solution(A, B, C)
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].
You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
def solution(a, b, c)
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].
You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
object Solution { def solution(a: Array[Int], b: Array[Int], c: Array[Int]): Int }
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].
You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
public func solution(_ A : inout [Int], _ B : inout [Int], _ C : inout [Int]) -> Int
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].
You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
function solution(A: number[], B: number[], C: number[]): number;
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].
You are given two non-empty arrays A and B consisting of N integers. These arrays represent N planks. More precisely, A[K] is the start and B[K] the end of the K−th plank.
Next, you are given a non-empty array C consisting of M integers. This array represents M nails. More precisely, C[I] is the position where you can hammer in the I−th nail.
We say that a plank (A[K], B[K]) is nailed if there exists a nail C[I] such that A[K] ≤ C[I] ≤ B[K].
The goal is to find the minimum number of nails that must be used until all the planks are nailed. In other words, you should find a value J such that all planks will be nailed after using only the first J nails. More precisely, for every plank (A[K], B[K]) such that 0 ≤ K < N, there should exist a nail C[I] such that I < J and A[K] ≤ C[I] ≤ B[K].
For example, given arrays A, B such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10four planks are represented: [1, 4], [4, 5], [5, 9] and [8, 10].
Given array C such that:
C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2if we use the following nails:
- 0, then planks [1, 4] and [4, 5] will both be nailed.
- 0, 1, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, then planks [1, 4], [4, 5] and [5, 9] will be nailed.
- 0, 1, 2, 3, then all the planks will be nailed.
Thus, four is the minimum number of nails that, used sequentially, allow all the planks to be nailed.
Write a function:
Private Function solution(A As Integer(), B As Integer(), C As Integer()) As Integer
that, given two non-empty arrays A and B consisting of N integers and a non-empty array C consisting of M integers, returns the minimum number of nails that, used sequentially, allow all the planks to be nailed.
If it is not possible to nail all the planks, the function should return −1.
For example, given arrays A, B, C such that:
A[0] = 1 B[0] = 4 A[1] = 4 B[1] = 5 A[2] = 5 B[2] = 9 A[3] = 8 B[3] = 10 C[0] = 4 C[1] = 6 C[2] = 7 C[3] = 10 C[4] = 2the function should return 4, as explained above.
Write an efficient algorithm for the following assumptions:
- N and M are integers within the range [1..30,000];
- each element of arrays A, B and C is an integer within the range [1..2*M];
- A[K] ≤ B[K].