Your browser (Unknown 0) is no longer supported. Some parts of the website may not work correctly. Please update your browser.

AVAILABLE LESSONS:

Lesson 1

Iterations

Lesson 2

Arrays

Lesson 3

Time Complexity

Lesson 4

Counting Elements

Lesson 5

Prefix Sums

Lesson 6

Sorting

Lesson 7

Stacks and Queues

Lesson 8

Leader

Lesson 9

Maximum slice problem

Lesson 10

Prime and composite numbers

Lesson 11

Sieve of Eratosthenes

Lesson 12

Euclidean algorithm

Lesson 13

Fibonacci numbers

Lesson 14

Binary search algorithm

Lesson 15

Caterpillar method

Lesson 16

Greedy algorithms

Lesson 17

Dynamic programming

Lesson 90

Tasks from Indeed Prime 2015 challenge

Lesson 91

Tasks from Indeed Prime 2016 challenge

Lesson 92

Tasks from Indeed Prime 2016 College Coders challenge

Lesson 99

Future training

Programming language:

For a given array A of N integers and a sequence S of N integers from the set {−1, 1}, we define val(A, S) as follows:

val(A, S) = |

sum{ A[i]*S[i] for i = 0..N−1 }|

(Assume that the sum of zero elements equals zero.)

For a given array A, we are looking for such a sequence S that minimizes val(A,S).

Write a function:

class Solution { public int solution(int[] A); }

that, given an array A of N integers, computes the minimum value of val(A,S) from all possible values of val(A,S) for all possible sequences S of N integers from the set {−1, 1}.

For example, given array:

your function should return 0, since for S = [−1, 1, −1, 1], val(A, S) = 0, which is the minimum possible value.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..20,000];
- each element of array A is an integer within the range [−100..100].

Copyright 2009–2020 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.