Your browser (Unknown 0) is no longer supported. Some parts of the website may not work correctly. Please update your browser.

UPCOMING CHALLENGES:

CURRENT CHALLENGES:

Niobium 2019

PAST CHALLENGES

Zirconium 2019

Yttrium 2019

Strontium 2019

Rubidium 2018

Arsenicum 2018

Krypton 2018

Bromum 2018

Future Mobility

Grand Challenge

Digital Gold

Selenium 2018

Germanium 2018

Gallium 2018

Zinc 2018

Cuprum 2018

Cutting Complexity

Nickel 2018

Cobaltum 2018

Ferrum 2018

Manganum 2017

Chromium 2017

Vanadium 2016

Titanium 2016

Scandium 2016

Calcium 2015

Kalium 2015

Argon 2015

Chlorum 2014

Sulphur 2014

Phosphorus 2014

Silicium 2014

Aluminium 2014

Magnesium 2014

Natrium 2014

Neon 2014

Fluorum 2014

Oxygenium 2014

Nitrogenium 2013

Carbo 2013

Boron 2013

Beryllium 2013

Lithium 2013

Helium 2013

Hydrogenium 2013

Omega 2013

Psi 2012

Chi 2012

Phi 2012

Upsilon 2012

Tau 2012

Sigma 2012

Rho 2012

Pi 2012

Omicron 2012

Xi 2012

Nu 2011

Mu 2011

Lambda 2011

Kappa 2011

Iota 2011

Theta 2011

Eta 2011

Zeta 2011

Epsilon 2011

Delta 2011

Gamma 2011

Beta 2010

Alpha 2010

ambitious

Count the palindromic subwords of given string.

Programming language:
Spoken language:

In this problem we consider only strings consisting of lower-case English letters (a−z).

A string is a *palindrome* if it reads exactly the same from left to right as it does from right to left. For example, these strings are palindromes:

azaabbaabacaba

These strings are not palindromes:

zazaabcdabacada

Given a string S of length N, a *slice* of S is a substring of S specified by a pair of integers (p, q), such that 0 ≤ p < q < N. A slice (p, q) of string S is *palindromic* if the string consisting of letters S[p], S[p+1], ..., S[q] is a palindrome. For example, in a string S = `abbacada`:

- slice (0, 3) is palindromic because
abbais a palindrome,- slice (6, 7) is not palindromic because
dais not a palindrome,- slice (2, 5) is not palindromic because
bacais not a palindrome,- slice (1, 2) is palindromic because
bbis a palindrome.

Write a function

int solution(char *S);

that, given a string S of length N letters, returns the number of palindromic slices of S. The function should return −1 if this number is greater than 100,000,000.

For example, for string S = `baababa` the function should return 6, because exactly six of its slices are palindromic; namely: (0, 3), (1, 2), (2, 4), (2, 6), (3, 5), (4, 6).

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..20,000];
- string S consists only of lowercase letters (
a−z).

Copyright 2009–2019 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

In this problem we consider only strings consisting of lower-case English letters (a−z).

A string is a *palindrome* if it reads exactly the same from left to right as it does from right to left. For example, these strings are palindromes:

azaabbaabacaba

These strings are not palindromes:

zazaabcdabacada

Given a string S of length N, a *slice* of S is a substring of S specified by a pair of integers (p, q), such that 0 ≤ p < q < N. A slice (p, q) of string S is *palindromic* if the string consisting of letters S[p], S[p+1], ..., S[q] is a palindrome. For example, in a string S = `abbacada`:

- slice (0, 3) is palindromic because
abbais a palindrome,- slice (6, 7) is not palindromic because
dais not a palindrome,- slice (2, 5) is not palindromic because
bacais not a palindrome,- slice (1, 2) is palindromic because
bbis a palindrome.

Write a function

int solution(string &S);

that, given a string S of length N letters, returns the number of palindromic slices of S. The function should return −1 if this number is greater than 100,000,000.

For example, for string S = `baababa` the function should return 6, because exactly six of its slices are palindromic; namely: (0, 3), (1, 2), (2, 4), (2, 6), (3, 5), (4, 6).

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..20,000];
- string S consists only of lowercase letters (
a−z).

Copyright 2009–2019 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

In this problem we consider only strings consisting of lower-case English letters (a−z).

A string is a *palindrome* if it reads exactly the same from left to right as it does from right to left. For example, these strings are palindromes:

azaabbaabacaba

These strings are not palindromes:

zazaabcdabacada

Given a string S of length N, a *slice* of S is a substring of S specified by a pair of integers (p, q), such that 0 ≤ p < q < N. A slice (p, q) of string S is *palindromic* if the string consisting of letters S[p], S[p+1], ..., S[q] is a palindrome. For example, in a string S = `abbacada`:

- slice (0, 3) is palindromic because
abbais a palindrome,- slice (6, 7) is not palindromic because
dais not a palindrome,- slice (2, 5) is not palindromic because
bacais not a palindrome,- slice (1, 2) is palindromic because
bbis a palindrome.

Write a function

class Solution { public int solution(string S); }

that, given a string S of length N letters, returns the number of palindromic slices of S. The function should return −1 if this number is greater than 100,000,000.

For example, for string S = `baababa` the function should return 6, because exactly six of its slices are palindromic; namely: (0, 3), (1, 2), (2, 4), (2, 6), (3, 5), (4, 6).

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..20,000];
- string S consists only of lowercase letters (
a−z).

Copyright 2009–2019 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

In this problem we consider only strings consisting of lower-case English letters (a−z).

*palindrome* if it reads exactly the same from left to right as it does from right to left. For example, these strings are palindromes:

azaabbaabacaba

These strings are not palindromes:

zazaabcdabacada

*slice* of S is a substring of S specified by a pair of integers (p, q), such that 0 ≤ p < q < N. A slice (p, q) of string S is *palindromic* if the string consisting of letters S[p], S[p+1], ..., S[q] is a palindrome. For example, in a string S = `abbacada`:

- slice (0, 3) is palindromic because
abbais a palindrome,- slice (6, 7) is not palindromic because
dais not a palindrome,- slice (2, 5) is not palindromic because
bacais not a palindrome,- slice (1, 2) is palindromic because
bbis a palindrome.

Write a function

func Solution(S string) int

`baababa` the function should return 6, because exactly six of its slices are palindromic; namely: (0, 3), (1, 2), (2, 4), (2, 6), (3, 5), (4, 6).

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..20,000];
- string S consists only of lowercase letters (
a−z).

In this problem we consider only strings consisting of lower-case English letters (a−z).

*palindrome* if it reads exactly the same from left to right as it does from right to left. For example, these strings are palindromes:

azaabbaabacaba

These strings are not palindromes:

zazaabcdabacada

*slice* of S is a substring of S specified by a pair of integers (p, q), such that 0 ≤ p < q < N. A slice (p, q) of string S is *palindromic* if the string consisting of letters S[p], S[p+1], ..., S[q] is a palindrome. For example, in a string S = `abbacada`:

- slice (0, 3) is palindromic because
abbais a palindrome,- slice (6, 7) is not palindromic because
dais not a palindrome,- slice (2, 5) is not palindromic because
bacais not a palindrome,- slice (1, 2) is palindromic because
bbis a palindrome.

Write a function

class Solution { public int solution(String S); }

`baababa` the function should return 6, because exactly six of its slices are palindromic; namely: (0, 3), (1, 2), (2, 4), (2, 6), (3, 5), (4, 6).

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..20,000];
- string S consists only of lowercase letters (
a−z).

In this problem we consider only strings consisting of lower-case English letters (a−z).

*palindrome* if it reads exactly the same from left to right as it does from right to left. For example, these strings are palindromes:

azaabbaabacaba

These strings are not palindromes:

zazaabcdabacada

*slice* of S is a substring of S specified by a pair of integers (p, q), such that 0 ≤ p < q < N. A slice (p, q) of string S is *palindromic* if the string consisting of letters S[p], S[p+1], ..., S[q] is a palindrome. For example, in a string S = `abbacada`:

- slice (0, 3) is palindromic because
abbais a palindrome,- slice (6, 7) is not palindromic because
dais not a palindrome,- slice (2, 5) is not palindromic because
bacais not a palindrome,- slice (1, 2) is palindromic because
bbis a palindrome.

Write a function

function solution(S);

`baababa` the function should return 6, because exactly six of its slices are palindromic; namely: (0, 3), (1, 2), (2, 4), (2, 6), (3, 5), (4, 6).

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..20,000];
- string S consists only of lowercase letters (
a−z).

In this problem we consider only strings consisting of lower-case English letters (a−z).

*palindrome* if it reads exactly the same from left to right as it does from right to left. For example, these strings are palindromes:

azaabbaabacaba

These strings are not palindromes:

zazaabcdabacada

*slice* of S is a substring of S specified by a pair of integers (p, q), such that 0 ≤ p < q < N. A slice (p, q) of string S is *palindromic* if the string consisting of letters S[p], S[p+1], ..., S[q] is a palindrome. For example, in a string S = `abbacada`:

- slice (0, 3) is palindromic because
abbais a palindrome,- slice (6, 7) is not palindromic because
dais not a palindrome,- slice (2, 5) is not palindromic because
bacais not a palindrome,- slice (1, 2) is palindromic because
bbis a palindrome.

Write a function

fun solution(S: String): Int

`baababa` the function should return 6, because exactly six of its slices are palindromic; namely: (0, 3), (1, 2), (2, 4), (2, 6), (3, 5), (4, 6).

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..20,000];
- string S consists only of lowercase letters (
a−z).

In this problem we consider only strings consisting of lower-case English letters (a−z).

*palindrome* if it reads exactly the same from left to right as it does from right to left. For example, these strings are palindromes:

azaabbaabacaba

These strings are not palindromes:

zazaabcdabacada

*slice* of S is a substring of S specified by a pair of integers (p, q), such that 0 ≤ p < q < N. A slice (p, q) of string S is *palindromic* if the string consisting of letters S[p], S[p+1], ..., S[q] is a palindrome. For example, in a string S = `abbacada`:

- slice (0, 3) is palindromic because
abbais a palindrome,- slice (6, 7) is not palindromic because
dais not a palindrome,- slice (2, 5) is not palindromic because
bacais not a palindrome,- slice (1, 2) is palindromic because
bbis a palindrome.

Write a function

function solution(S)

`baababa` the function should return 6, because exactly six of its slices are palindromic; namely: (0, 3), (1, 2), (2, 4), (2, 6), (3, 5), (4, 6).

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..20,000];
- string S consists only of lowercase letters (
a−z).

In this problem we consider only strings consisting of lower-case English letters (a−z).

*palindrome* if it reads exactly the same from left to right as it does from right to left. For example, these strings are palindromes:

azaabbaabacaba

These strings are not palindromes:

zazaabcdabacada

*slice* of S is a substring of S specified by a pair of integers (p, q), such that 0 ≤ p < q < N. A slice (p, q) of string S is *palindromic* if the string consisting of letters S[p], S[p+1], ..., S[q] is a palindrome. For example, in a string S = `abbacada`:

- slice (0, 3) is palindromic because
abbais a palindrome,- slice (6, 7) is not palindromic because
dais not a palindrome,- slice (2, 5) is not palindromic because
bacais not a palindrome,- slice (1, 2) is palindromic because
bbis a palindrome.

Write a function

int solution(NSString *S);

`baababa` the function should return 6, because exactly six of its slices are palindromic; namely: (0, 3), (1, 2), (2, 4), (2, 6), (3, 5), (4, 6).

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..20,000];
- string S consists only of lowercase letters (
a−z).

In this problem we consider only strings consisting of lower-case English letters (a−z).

*palindrome* if it reads exactly the same from left to right as it does from right to left. For example, these strings are palindromes:

azaabbaabacaba

These strings are not palindromes:

zazaabcdabacada

*slice* of S is a substring of S specified by a pair of integers (p, q), such that 0 ≤ p < q < N. A slice (p, q) of string S is *palindromic* if the string consisting of letters S[p], S[p+1], ..., S[q] is a palindrome. For example, in a string S = `abbacada`:

- slice (0, 3) is palindromic because
abbais a palindrome,- slice (6, 7) is not palindromic because
dais not a palindrome,- slice (2, 5) is not palindromic because
bacais not a palindrome,- slice (1, 2) is palindromic because
bbis a palindrome.

Write a function

function solution(S: PChar): longint;

`baababa` the function should return 6, because exactly six of its slices are palindromic; namely: (0, 3), (1, 2), (2, 4), (2, 6), (3, 5), (4, 6).

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..20,000];
- string S consists only of lowercase letters (
a−z).

In this problem we consider only strings consisting of lower-case English letters (a−z).

*palindrome* if it reads exactly the same from left to right as it does from right to left. For example, these strings are palindromes:

azaabbaabacaba

These strings are not palindromes:

zazaabcdabacada

*slice* of S is a substring of S specified by a pair of integers (p, q), such that 0 ≤ p < q < N. A slice (p, q) of string S is *palindromic* if the string consisting of letters S[p], S[p+1], ..., S[q] is a palindrome. For example, in a string S = `abbacada`:

- slice (0, 3) is palindromic because
abbais a palindrome,- slice (6, 7) is not palindromic because
dais not a palindrome,- slice (2, 5) is not palindromic because
bacais not a palindrome,- slice (1, 2) is palindromic because
bbis a palindrome.

Write a function

function solution($S);

`baababa` the function should return 6, because exactly six of its slices are palindromic; namely: (0, 3), (1, 2), (2, 4), (2, 6), (3, 5), (4, 6).

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..20,000];
- string S consists only of lowercase letters (
a−z).

In this problem we consider only strings consisting of lower-case English letters (a−z).

*palindrome* if it reads exactly the same from left to right as it does from right to left. For example, these strings are palindromes:

azaabbaabacaba

These strings are not palindromes:

zazaabcdabacada

*slice* of S is a substring of S specified by a pair of integers (p, q), such that 0 ≤ p < q < N. A slice (p, q) of string S is *palindromic* if the string consisting of letters S[p], S[p+1], ..., S[q] is a palindrome. For example, in a string S = `abbacada`:

- slice (0, 3) is palindromic because
abbais a palindrome,- slice (6, 7) is not palindromic because
dais not a palindrome,- slice (2, 5) is not palindromic because
bacais not a palindrome,- slice (1, 2) is palindromic because
bbis a palindrome.

Write a function

sub solution { my ($S)=@_; ... }

`baababa` the function should return 6, because exactly six of its slices are palindromic; namely: (0, 3), (1, 2), (2, 4), (2, 6), (3, 5), (4, 6).

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..20,000];
- string S consists only of lowercase letters (
a−z).

In this problem we consider only strings consisting of lower-case English letters (a−z).

*palindrome* if it reads exactly the same from left to right as it does from right to left. For example, these strings are palindromes:

azaabbaabacaba

These strings are not palindromes:

zazaabcdabacada

*slice* of S is a substring of S specified by a pair of integers (p, q), such that 0 ≤ p < q < N. A slice (p, q) of string S is *palindromic* if the string consisting of letters S[p], S[p+1], ..., S[q] is a palindrome. For example, in a string S = `abbacada`:

- slice (0, 3) is palindromic because
abbais a palindrome,- slice (6, 7) is not palindromic because
dais not a palindrome,- slice (2, 5) is not palindromic because
bacais not a palindrome,- slice (1, 2) is palindromic because
bbis a palindrome.

Write a function

def solution(S)

`baababa` the function should return 6, because exactly six of its slices are palindromic; namely: (0, 3), (1, 2), (2, 4), (2, 6), (3, 5), (4, 6).

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..20,000];
- string S consists only of lowercase letters (
a−z).

In this problem we consider only strings consisting of lower-case English letters (a−z).

*palindrome* if it reads exactly the same from left to right as it does from right to left. For example, these strings are palindromes:

azaabbaabacaba

These strings are not palindromes:

zazaabcdabacada

*slice* of S is a substring of S specified by a pair of integers (p, q), such that 0 ≤ p < q < N. A slice (p, q) of string S is *palindromic* if the string consisting of letters S[p], S[p+1], ..., S[q] is a palindrome. For example, in a string S = `abbacada`:

- slice (0, 3) is palindromic because
abbais a palindrome,- slice (6, 7) is not palindromic because
dais not a palindrome,- slice (2, 5) is not palindromic because
bacais not a palindrome,- slice (1, 2) is palindromic because
bbis a palindrome.

Write a function

def solution(s)

`baababa` the function should return 6, because exactly six of its slices are palindromic; namely: (0, 3), (1, 2), (2, 4), (2, 6), (3, 5), (4, 6).

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..20,000];
- string S consists only of lowercase letters (
a−z).

In this problem we consider only strings consisting of lower-case English letters (a−z).

*palindrome* if it reads exactly the same from left to right as it does from right to left. For example, these strings are palindromes:

azaabbaabacaba

These strings are not palindromes:

zazaabcdabacada

*slice* of S is a substring of S specified by a pair of integers (p, q), such that 0 ≤ p < q < N. A slice (p, q) of string S is *palindromic* if the string consisting of letters S[p], S[p+1], ..., S[q] is a palindrome. For example, in a string S = `abbacada`:

- slice (0, 3) is palindromic because
abbais a palindrome,- slice (6, 7) is not palindromic because
dais not a palindrome,- slice (2, 5) is not palindromic because
bacais not a palindrome,- slice (1, 2) is palindromic because
bbis a palindrome.

Write a function

object Solution { def solution(s: String): Int }

`baababa` the function should return 6, because exactly six of its slices are palindromic; namely: (0, 3), (1, 2), (2, 4), (2, 6), (3, 5), (4, 6).

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..20,000];
- string S consists only of lowercase letters (
a−z).

In this problem we consider only strings consisting of lower-case English letters (a−z).

*palindrome* if it reads exactly the same from left to right as it does from right to left. For example, these strings are palindromes:

azaabbaabacaba

These strings are not palindromes:

zazaabcdabacada

*slice* of S is a substring of S specified by a pair of integers (p, q), such that 0 ≤ p < q < N. A slice (p, q) of string S is *palindromic* if the string consisting of letters S[p], S[p+1], ..., S[q] is a palindrome. For example, in a string S = `abbacada`:

- slice (0, 3) is palindromic because
abbais a palindrome,- slice (6, 7) is not palindromic because
dais not a palindrome,- slice (2, 5) is not palindromic because
bacais not a palindrome,- slice (1, 2) is palindromic because
bbis a palindrome.

Write a function

public func solution(_ S : inout String) -> Int

`baababa` the function should return 6, because exactly six of its slices are palindromic; namely: (0, 3), (1, 2), (2, 4), (2, 6), (3, 5), (4, 6).

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..20,000];
- string S consists only of lowercase letters (
a−z).

In this problem we consider only strings consisting of lower-case English letters (a−z).

*palindrome* if it reads exactly the same from left to right as it does from right to left. For example, these strings are palindromes:

azaabbaabacaba

These strings are not palindromes:

zazaabcdabacada

*slice* of S is a substring of S specified by a pair of integers (p, q), such that 0 ≤ p < q < N. A slice (p, q) of string S is *palindromic* if the string consisting of letters S[p], S[p+1], ..., S[q] is a palindrome. For example, in a string S = `abbacada`:

- slice (0, 3) is palindromic because
abbais a palindrome,- slice (6, 7) is not palindromic because
dais not a palindrome,- slice (2, 5) is not palindromic because
bacais not a palindrome,- slice (1, 2) is palindromic because
bbis a palindrome.

Write a function

Private Function solution(S As String) As Integer

`baababa` the function should return 6, because exactly six of its slices are palindromic; namely: (0, 3), (1, 2), (2, 4), (2, 6), (3, 5), (4, 6).

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [0..20,000];
- string S consists only of lowercase letters (
a−z).

Information about upcoming challenges, solutions and lessons directly in your inbox.

© 2009–2019 Codility Ltd., registered in England and Wales (No. 7048726). VAT ID GB981191408. Registered office: 107 Cheapside, London EC2V 6DN