Your browser (Unknown 0) is no longer supported. Some parts of the website may not work correctly. Please update your browser.

UPCOMING CHALLENGES:

CURRENT CHALLENGES:

Pi Code Challenge

PAST CHALLENGES

Year of the Rabbit

Carol of the Code

Game of Codes

National Coding Week 2022

Jurassic Code

Fury Road

Bug Wars: The Last Hope

Muad'Dib's

Year of the Tiger

Pair a Coder

Code Alone

Gamer's

Spooktober

National Coding Week

The Coder of Rivia

Fast & Curious

The Fellowship of the Code

May the 4th

The Great Code Off 2021

The Doge 2021

The Matrix 2021

The OLX Group challenge

Silver 2020

Palladium 2020

Rhodium 2019

Ruthenium 2019

Technetium 2019

Molybdenum 2019

Niobium 2019

Zirconium 2019

Yttrium 2019

Strontium 2019

Rubidium 2018

Arsenicum 2018

Krypton 2018

Bromum 2018

Future Mobility

Grand Challenge

Digital Gold

Selenium 2018

Germanium 2018

Gallium 2018

Zinc 2018

Cuprum 2018

Cutting Complexity

Nickel 2018

Cobaltum 2018

Ferrum 2018

Manganum 2017

Chromium 2017

Vanadium 2016

Titanium 2016

Scandium 2016

Calcium 2015

Kalium 2015

Argon 2015

Chlorum 2014

Sulphur 2014

Phosphorus 2014

Silicium 2014

Aluminium 2014

Magnesium 2014

Natrium 2014

Neon 2014

Fluorum 2014

Oxygenium 2014

Nitrogenium 2013

Carbo 2013

Boron 2013

Beryllium 2013

Lithium 2013

Helium 2013

Hydrogenium 2013

Omega 2013

Psi 2012

Chi 2012

Phi 2012

Upsilon 2012

Tau 2012

Sigma 2012

Rho 2012

Pi 2012

Omicron 2012

Xi 2012

Nu 2011

Mu 2011

Lambda 2011

Kappa 2011

Iota 2011

Theta 2011

Eta 2011

Zeta 2011

Epsilon 2011

Delta 2011

Gamma 2011

Beta 2010

Alpha 2010

Given N rectangular buildings of width 1, find the minimum total area of two rectangular banners that cover all of the buildings.

There are N rectangular buildings standing along the road next to each other. The K-th building is of size H[K] × 1.

Because a renovation of all of the buildings is planned, we want to cover them with rectangular banners until the renovations are finished. Of course, to cover a building, the banner has to be at least as high as the building. We can cover more than one building with a banner if it is wider than 1.

For example, to cover buildings of heights 3, 1, 4 we could use a banner of size 4×3 (i.e. of height 4 and width 3), marked here in blue:

We can order at most two banners and we want to cover all of the buildings. Also, we want to minimize the amount of material needed to produce the banners.

What is the minimum total area of at most two banners which cover all of the buildings?

Write a function:

class Solution { public int solution(int[] H); }

that, given an array H consisting of N integers, returns the minimum total area of at most two banners that we will have to order.

**Examples:**

1. Given H = [3, 1, 4], the function should return 10. The result can be achieved by covering the first two buildings with a banner of size 3×2 and the third building with a banner of size 4×1:

2. Given H = [5, 3, 2, 4], the function should return 17. The result can be achieved by covering the first building with a banner of size 5×1 and the other buildings with a banner of size 4×3:

3. Given H = [5, 3, 5, 2, 1], your function should return 19. The result can be achieved by covering the first three buildings with a banner of size 5×3 and the other two with a banner of size 2×2:

4. Given H = [7, 7, 3, 7, 7], your function should return 35. The result can be achieved by using one banner of size 7×5:

5. Given H = [1, 1, 7, 6, 6, 6], your function should return 30. The result can be achieved by using banners of size 1×2 and 7×4:

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [1..100,000];
- each element of array H is an integer within the range [1..10,000].

Copyright 2009–2024 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.