Your browser (Unknown 0) is no longer supported. Some parts of the website may not work correctly. Please update your browser.

UPCOMING CHALLENGES:

CURRENT CHALLENGES:

Krypton 2018

PAST CHALLENGES

Bromum 2018

Future Mobility

Grand Challenge

Decoding Master

Digital Gold

Selenium 2018

Germanium 2018

Gallium 2018

Zinc 2018

Cuprum 2018

Cutting Complexity

Nickel 2018

Cobaltum 2018

Ferrum 2018

Manganum 2017

Chromium 2017

Vanadium 2016

Titanium 2016

Scandium 2016

Calcium 2015

Kalium 2015

Argon 2015

Chlorum 2014

Sulphur 2014

Phosphorus 2014

Silicium 2014

Aluminium 2014

Magnesium 2014

Natrium 2014

Neon 2014

Fluorum 2014

Oxygenium 2014

Nitrogenium 2013

Carbo 2013

Boron 2013

Beryllium 2013

Lithium 2013

Helium 2013

Hydrogenium 2013

Omega 2013

Psi 2012

Chi 2012

Phi 2012

Upsilon 2012

Tau 2012

Sigma 2012

Rho 2012

Pi 2012

Omicron 2012

Xi 2012

Nu 2011

Mu 2011

Lambda 2011

Kappa 2011

Iota 2011

Theta 2011

Eta 2011

Zeta 2011

Epsilon 2011

Delta 2011

Gamma 2011

Beta 2010

Alpha 2010

respectable

Given an array consisting of the integers -1, 0 and 1, find the longest slice with a non-negative sum.

Programming language:
Spoken language:

You are given an array A consisting of the integers −1, 0 and 1. A *slice* of that array is any pair of integers (P, Q) such that 0 ≤ P ≤ Q < N. Your task is to find the longest slice of A whose elements yield a non-negative sum.

Write a function:

int solution(int A[], int N);

that, given an array A of length N, consisting only of the values −1, 0, 1, returns the length of the longest slice of A that yields a non-negative sum. If there's no such slice, your function should return 0.

For example, given A = [−1, −1, 1, −1, 1, 0, 1, −1, −1], your function should return 7, as the slice starting at the second position and ending at the eighth is the longest slice with a non-negative sum.

For another example, given A = [1, 1, −1, −1, −1, −1, −1, 1, 1] your function should return 4: both the first four elements and the last four elements of array A are longest valid slices.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−1..1].

Copyright 2009–2018 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

You are given an array A consisting of the integers −1, 0 and 1. A *slice* of that array is any pair of integers (P, Q) such that 0 ≤ P ≤ Q < N. Your task is to find the longest slice of A whose elements yield a non-negative sum.

Write a function:

int solution(vector<int> &A);

that, given an array A of length N, consisting only of the values −1, 0, 1, returns the length of the longest slice of A that yields a non-negative sum. If there's no such slice, your function should return 0.

For example, given A = [−1, −1, 1, −1, 1, 0, 1, −1, −1], your function should return 7, as the slice starting at the second position and ending at the eighth is the longest slice with a non-negative sum.

For another example, given A = [1, 1, −1, −1, −1, −1, −1, 1, 1] your function should return 4: both the first four elements and the last four elements of array A are longest valid slices.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−1..1].

Copyright 2009–2018 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

You are given an array A consisting of the integers −1, 0 and 1. A *slice* of that array is any pair of integers (P, Q) such that 0 ≤ P ≤ Q < N. Your task is to find the longest slice of A whose elements yield a non-negative sum.

Write a function:

class Solution { public int solution(int[] A); }

that, given an array A of length N, consisting only of the values −1, 0, 1, returns the length of the longest slice of A that yields a non-negative sum. If there's no such slice, your function should return 0.

For example, given A = [−1, −1, 1, −1, 1, 0, 1, −1, −1], your function should return 7, as the slice starting at the second position and ending at the eighth is the longest slice with a non-negative sum.

For another example, given A = [1, 1, −1, −1, −1, −1, −1, 1, 1] your function should return 4: both the first four elements and the last four elements of array A are longest valid slices.

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−1..1].

Copyright 2009–2018 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

*slice* of that array is any pair of integers (P, Q) such that 0 ≤ P ≤ Q < N. Your task is to find the longest slice of A whose elements yield a non-negative sum.

Write a function:

func Solution(A []int) int

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−1..1].

*slice* of that array is any pair of integers (P, Q) such that 0 ≤ P ≤ Q < N. Your task is to find the longest slice of A whose elements yield a non-negative sum.

Write a function:

class Solution { public int solution(int[] A); }

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−1..1].

*slice* of that array is any pair of integers (P, Q) such that 0 ≤ P ≤ Q < N. Your task is to find the longest slice of A whose elements yield a non-negative sum.

Write a function:

function solution(A);

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−1..1].

*slice* of that array is any pair of integers (P, Q) such that 0 ≤ P ≤ Q < N. Your task is to find the longest slice of A whose elements yield a non-negative sum.

Write a function:

function solution(A)

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−1..1].

*slice* of that array is any pair of integers (P, Q) such that 0 ≤ P ≤ Q < N. Your task is to find the longest slice of A whose elements yield a non-negative sum.

Write a function:

int solution(NSMutableArray *A);

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−1..1].

*slice* of that array is any pair of integers (P, Q) such that 0 ≤ P ≤ Q < N. Your task is to find the longest slice of A whose elements yield a non-negative sum.

Write a function:

function solution(A: array of longint; N: longint): longint;

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−1..1].

*slice* of that array is any pair of integers (P, Q) such that 0 ≤ P ≤ Q < N. Your task is to find the longest slice of A whose elements yield a non-negative sum.

Write a function:

function solution($A);

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−1..1].

*slice* of that array is any pair of integers (P, Q) such that 0 ≤ P ≤ Q < N. Your task is to find the longest slice of A whose elements yield a non-negative sum.

Write a function:

sub solution { my (@A)=@_; ... }

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−1..1].

*slice* of that array is any pair of integers (P, Q) such that 0 ≤ P ≤ Q < N. Your task is to find the longest slice of A whose elements yield a non-negative sum.

Write a function:

def solution(A)

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−1..1].

*slice* of that array is any pair of integers (P, Q) such that 0 ≤ P ≤ Q < N. Your task is to find the longest slice of A whose elements yield a non-negative sum.

Write a function:

def solution(a)

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−1..1].

*slice* of that array is any pair of integers (P, Q) such that 0 ≤ P ≤ Q < N. Your task is to find the longest slice of A whose elements yield a non-negative sum.

Write a function:

object Solution { def solution(a: Array[Int]): Int }

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−1..1].

*slice* of that array is any pair of integers (P, Q) such that 0 ≤ P ≤ Q < N. Your task is to find the longest slice of A whose elements yield a non-negative sum.

Write a function:

public func solution(inout A : [Int]) -> Int

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−1..1].

*slice* of that array is any pair of integers (P, Q) such that 0 ≤ P ≤ Q < N. Your task is to find the longest slice of A whose elements yield a non-negative sum.

Write a function:

public func solution(_ A : inout [Int]) -> Int

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−1..1].

*slice* of that array is any pair of integers (P, Q) such that 0 ≤ P ≤ Q < N. Your task is to find the longest slice of A whose elements yield a non-negative sum.

Write a function:

Private Function solution(A As Integer()) As Integer

Write an ** efficient** algorithm for the following assumptions:

- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−1..1].

Information about upcoming challenges, solutions and lessons directly in your inbox.

© 2009–2018 Codility Ltd., registered in England and Wales (No. 7048726). VAT ID GB981191408. Registered office: 107 Cheapside, London EC2V 6DN