Your browser (Unknown 0) is no longer supported. Some parts of the website may not work correctly. Please update your browser.

UPCOMING CHALLENGES:

Germanium 2018

CURRENT CHALLENGES:

Gallium 2018

PAST CHALLENGES

Zinc 2018

Cuprum 2018

Cutting Complexity

Nickel 2018

Cobaltum 2018

Ferrum 2018

Manganum 2017

Chromium 2017

Vanadium 2016

Titanium 2016

Scandium 2016

Calcium 2015

Kalium 2015

Argon 2015

Chlorum 2014

Sulphur 2014

Phosphorus 2014

Silicium 2014

Aluminium 2014

Magnesium 2014

Natrium 2014

Neon 2014

Fluorum 2014

Oxygenium 2014

Nitrogenium 2013

Carbo 2013

Boron 2013

Beryllium 2013

Lithium 2013

Helium 2013

Hydrogenium 2013

Omega 2013

Psi 2012

Chi 2012

Phi 2012

Upsilon 2012

Tau 2012

Sigma 2012

Rho 2012

Pi 2012

Omicron 2012

Xi 2012

Nu 2011

Mu 2011

Lambda 2011

Kappa 2011

Iota 2011

Theta 2011

Eta 2011

Zeta 2011

Epsilon 2011

Delta 2011

Gamma 2011

Beta 2010

Alpha 2010

ambitious

While removing edges from a mesh grid, find the moment when there ceases to be a connection between opposite corners.

Programming language:
Spoken language:

There is an N **×** N square mesh-shaped grid of wires, as shown in a figure below. Nodes of the grid are at points (X, Y), where X and Y are integers from 0 to N−1. An electric current flows through the grid, between the nodes at (0, 0) and (N−1, N−1).

Initially, all the wires conduct the current, but the wires burn out at a rate of one per second. The burnouts are described by three arrays of integers, A, B and C, each of size M. For each moment T (0 ≤ T < M), in the T-th second the wire between nodes (A[T], B[T]) and:

- (A[T], B[T] + 1), if C[T] = 0 or
- (A[T] + 1, B[T]), if C[T] = 1

burns out. You can assume that the arrays describe existing wires, and that no wire burns out more than once. Your task is to determine when the current stops flowing between the nodes at (0,0) and (N−1,N−1).

Write a function:

int solution(int N, int A[], int M, int B[], int M2, int C[], int M3);

that, given integer N and arrays A, B and C, returns the number of seconds after which the current stops flowing between the nodes at (0, 0) and (N−1, N−1). If the current keeps flowing even after all M wires burn out, the function should return −1.

For example, given N = 4, M = 9 and the following arrays:

your function should return 8, because just after the eighth wire burns out, there is no connection between the nodes at (0, 0) and (N−1, N−1). This situation is shown in the following figure:

Given N = 4, M = 1 and the following arrays:

your function should return −1, because burning out a single wire cannot break the connection between the nodes at (0, 0) and (N−1, N−1).

Assume that:

- N is an integer within the range [1..400];
- M is an integer within the range [0..2*N*(N−1)];
- each element of arrays A, B is an integer within the range [0..N−1];
- each element of array C is an integer that can have one of the following values: 0, 1.

Complexity:

- expected worst-case time complexity is O(N
^{2}*log(N));- expected worst-case space complexity is O(N
^{2}) (not counting the storage required for input arguments).

Copyright 2009–2018 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

There is an N **×** N square mesh-shaped grid of wires, as shown in a figure below. Nodes of the grid are at points (X, Y), where X and Y are integers from 0 to N−1. An electric current flows through the grid, between the nodes at (0, 0) and (N−1, N−1).

Initially, all the wires conduct the current, but the wires burn out at a rate of one per second. The burnouts are described by three arrays of integers, A, B and C, each of size M. For each moment T (0 ≤ T < M), in the T-th second the wire between nodes (A[T], B[T]) and:

- (A[T], B[T] + 1), if C[T] = 0 or
- (A[T] + 1, B[T]), if C[T] = 1

burns out. You can assume that the arrays describe existing wires, and that no wire burns out more than once. Your task is to determine when the current stops flowing between the nodes at (0,0) and (N−1,N−1).

Write a function:

int solution(int N, vector<int> &A, vector<int> &B, vector<int> &C);

that, given integer N and arrays A, B and C, returns the number of seconds after which the current stops flowing between the nodes at (0, 0) and (N−1, N−1). If the current keeps flowing even after all M wires burn out, the function should return −1.

For example, given N = 4, M = 9 and the following arrays:

your function should return 8, because just after the eighth wire burns out, there is no connection between the nodes at (0, 0) and (N−1, N−1). This situation is shown in the following figure:

Given N = 4, M = 1 and the following arrays:

your function should return −1, because burning out a single wire cannot break the connection between the nodes at (0, 0) and (N−1, N−1).

Assume that:

- N is an integer within the range [1..400];
- M is an integer within the range [0..2*N*(N−1)];
- each element of arrays A, B is an integer within the range [0..N−1];
- each element of array C is an integer that can have one of the following values: 0, 1.

Complexity:

- expected worst-case time complexity is O(N
^{2}*log(N));- expected worst-case space complexity is O(N
^{2}) (not counting the storage required for input arguments).

Copyright 2009–2018 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

There is an N **×** N square mesh-shaped grid of wires, as shown in a figure below. Nodes of the grid are at points (X, Y), where X and Y are integers from 0 to N−1. An electric current flows through the grid, between the nodes at (0, 0) and (N−1, N−1).

Initially, all the wires conduct the current, but the wires burn out at a rate of one per second. The burnouts are described by three arrays of integers, A, B and C, each of size M. For each moment T (0 ≤ T < M), in the T-th second the wire between nodes (A[T], B[T]) and:

- (A[T], B[T] + 1), if C[T] = 0 or
- (A[T] + 1, B[T]), if C[T] = 1

burns out. You can assume that the arrays describe existing wires, and that no wire burns out more than once. Your task is to determine when the current stops flowing between the nodes at (0,0) and (N−1,N−1).

Write a function:

class Solution { public int solution(int N, int[] A, int[] B, int[] C); }

that, given integer N and arrays A, B and C, returns the number of seconds after which the current stops flowing between the nodes at (0, 0) and (N−1, N−1). If the current keeps flowing even after all M wires burn out, the function should return −1.

For example, given N = 4, M = 9 and the following arrays:

your function should return 8, because just after the eighth wire burns out, there is no connection between the nodes at (0, 0) and (N−1, N−1). This situation is shown in the following figure:

Given N = 4, M = 1 and the following arrays:

your function should return −1, because burning out a single wire cannot break the connection between the nodes at (0, 0) and (N−1, N−1).

Assume that:

- N is an integer within the range [1..400];
- M is an integer within the range [0..2*N*(N−1)];
- each element of arrays A, B is an integer within the range [0..N−1];
- each element of array C is an integer that can have one of the following values: 0, 1.

Complexity:

- expected worst-case time complexity is O(N
^{2}*log(N));- expected worst-case space complexity is O(N
^{2}) (not counting the storage required for input arguments).

Copyright 2009–2018 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

**×** N square mesh-shaped grid of wires, as shown in a figure below. Nodes of the grid are at points (X, Y), where X and Y are integers from 0 to N−1. An electric current flows through the grid, between the nodes at (0, 0) and (N−1, N−1).

- (A[T], B[T] + 1), if C[T] = 0 or
- (A[T] + 1, B[T]), if C[T] = 1

Write a function:

func Solution(N int, A []int, B []int, C []int) int

For example, given N = 4, M = 9 and the following arrays:

Given N = 4, M = 1 and the following arrays:

Assume that:

- N is an integer within the range [1..400];
- M is an integer within the range [0..2*N*(N−1)];
- each element of arrays A, B is an integer within the range [0..N−1];
- each element of array C is an integer that can have one of the following values: 0, 1.

Complexity:

- expected worst-case time complexity is O(N
^{2}*log(N));^{2}) (not counting the storage required for input arguments).

**×** N square mesh-shaped grid of wires, as shown in a figure below. Nodes of the grid are at points (X, Y), where X and Y are integers from 0 to N−1. An electric current flows through the grid, between the nodes at (0, 0) and (N−1, N−1).

- (A[T], B[T] + 1), if C[T] = 0 or
- (A[T] + 1, B[T]), if C[T] = 1

Write a function:

class Solution { public int solution(int N, int[] A, int[] B, int[] C); }

For example, given N = 4, M = 9 and the following arrays:

Given N = 4, M = 1 and the following arrays:

Assume that:

- N is an integer within the range [1..400];
- M is an integer within the range [0..2*N*(N−1)];
- each element of arrays A, B is an integer within the range [0..N−1];
- each element of array C is an integer that can have one of the following values: 0, 1.

Complexity:

- expected worst-case time complexity is O(N
^{2}*log(N));^{2}) (not counting the storage required for input arguments).

**×** N square mesh-shaped grid of wires, as shown in a figure below. Nodes of the grid are at points (X, Y), where X and Y are integers from 0 to N−1. An electric current flows through the grid, between the nodes at (0, 0) and (N−1, N−1).

- (A[T], B[T] + 1), if C[T] = 0 or
- (A[T] + 1, B[T]), if C[T] = 1

Write a function:

function solution(N, A, B, C);

For example, given N = 4, M = 9 and the following arrays:

Given N = 4, M = 1 and the following arrays:

Assume that:

- N is an integer within the range [1..400];
- M is an integer within the range [0..2*N*(N−1)];
- each element of arrays A, B is an integer within the range [0..N−1];
- each element of array C is an integer that can have one of the following values: 0, 1.

Complexity:

- expected worst-case time complexity is O(N
^{2}*log(N));^{2}) (not counting the storage required for input arguments).

**×** N square mesh-shaped grid of wires, as shown in a figure below. Nodes of the grid are at points (X, Y), where X and Y are integers from 0 to N−1. An electric current flows through the grid, between the nodes at (0, 0) and (N−1, N−1).

- (A[T], B[T] + 1), if C[T] = 0 or
- (A[T] + 1, B[T]), if C[T] = 1

Write a function:

function solution(N, A, B, C)

For example, given N = 4, M = 9 and the following arrays:

Given N = 4, M = 1 and the following arrays:

Assume that:

- N is an integer within the range [1..400];
- M is an integer within the range [0..2*N*(N−1)];
- each element of arrays A, B is an integer within the range [0..N−1];
- each element of array C is an integer that can have one of the following values: 0, 1.

Complexity:

- expected worst-case time complexity is O(N
^{2}*log(N));^{2}) (not counting the storage required for input arguments).

Note: All arrays in this task are zero-indexed, unlike the common Lua convention. You can use `#A` to get the length of the array A.

**×** N square mesh-shaped grid of wires, as shown in a figure below. Nodes of the grid are at points (X, Y), where X and Y are integers from 0 to N−1. An electric current flows through the grid, between the nodes at (0, 0) and (N−1, N−1).

- (A[T], B[T] + 1), if C[T] = 0 or
- (A[T] + 1, B[T]), if C[T] = 1

Write a function:

int solution(int N, NSMutableArray *A, NSMutableArray *B, NSMutableArray *C);

For example, given N = 4, M = 9 and the following arrays:

Given N = 4, M = 1 and the following arrays:

Assume that:

- N is an integer within the range [1..400];
- M is an integer within the range [0..2*N*(N−1)];
- each element of arrays A, B is an integer within the range [0..N−1];
- each element of array C is an integer that can have one of the following values: 0, 1.

Complexity:

- expected worst-case time complexity is O(N
^{2}*log(N));^{2}) (not counting the storage required for input arguments).

**×** N square mesh-shaped grid of wires, as shown in a figure below. Nodes of the grid are at points (X, Y), where X and Y are integers from 0 to N−1. An electric current flows through the grid, between the nodes at (0, 0) and (N−1, N−1).

- (A[T], B[T] + 1), if C[T] = 0 or
- (A[T] + 1, B[T]), if C[T] = 1

Write a function:

function solution(N: longint; A: array of longint; M: longint; B: array of longint; M2: longint; C: array of longint; M3: longint): longint;

For example, given N = 4, M = 9 and the following arrays:

Given N = 4, M = 1 and the following arrays:

Assume that:

- N is an integer within the range [1..400];
- M is an integer within the range [0..2*N*(N−1)];
- each element of arrays A, B is an integer within the range [0..N−1];
- each element of array C is an integer that can have one of the following values: 0, 1.

Complexity:

- expected worst-case time complexity is O(N
^{2}*log(N));^{2}) (not counting the storage required for input arguments).

**×** N square mesh-shaped grid of wires, as shown in a figure below. Nodes of the grid are at points (X, Y), where X and Y are integers from 0 to N−1. An electric current flows through the grid, between the nodes at (0, 0) and (N−1, N−1).

- (A[T], B[T] + 1), if C[T] = 0 or
- (A[T] + 1, B[T]), if C[T] = 1

Write a function:

function solution($N, $A, $B, $C);

For example, given N = 4, M = 9 and the following arrays:

Given N = 4, M = 1 and the following arrays:

Assume that:

- N is an integer within the range [1..400];
- M is an integer within the range [0..2*N*(N−1)];
- each element of arrays A, B is an integer within the range [0..N−1];
- each element of array C is an integer that can have one of the following values: 0, 1.

Complexity:

- expected worst-case time complexity is O(N
^{2}*log(N));^{2}) (not counting the storage required for input arguments).

**×** N square mesh-shaped grid of wires, as shown in a figure below. Nodes of the grid are at points (X, Y), where X and Y are integers from 0 to N−1. An electric current flows through the grid, between the nodes at (0, 0) and (N−1, N−1).

- (A[T], B[T] + 1), if C[T] = 0 or
- (A[T] + 1, B[T]), if C[T] = 1

Write a function:

sub solution { my ($N, $A, $B, $C)=@_; my @A=@$A; my @B=@$B; my @C=@$C; ... }

For example, given N = 4, M = 9 and the following arrays:

Given N = 4, M = 1 and the following arrays:

Assume that:

- N is an integer within the range [1..400];
- M is an integer within the range [0..2*N*(N−1)];
- each element of arrays A, B is an integer within the range [0..N−1];
- each element of array C is an integer that can have one of the following values: 0, 1.

Complexity:

- expected worst-case time complexity is O(N
^{2}*log(N));^{2}) (not counting the storage required for input arguments).

**×** N square mesh-shaped grid of wires, as shown in a figure below. Nodes of the grid are at points (X, Y), where X and Y are integers from 0 to N−1. An electric current flows through the grid, between the nodes at (0, 0) and (N−1, N−1).

- (A[T], B[T] + 1), if C[T] = 0 or
- (A[T] + 1, B[T]), if C[T] = 1

Write a function:

def solution(N, A, B, C)

For example, given N = 4, M = 9 and the following arrays:

Given N = 4, M = 1 and the following arrays:

Assume that:

- N is an integer within the range [1..400];
- M is an integer within the range [0..2*N*(N−1)];
- each element of arrays A, B is an integer within the range [0..N−1];
- each element of array C is an integer that can have one of the following values: 0, 1.

Complexity:

- expected worst-case time complexity is O(N
^{2}*log(N));^{2}) (not counting the storage required for input arguments).

**×** N square mesh-shaped grid of wires, as shown in a figure below. Nodes of the grid are at points (X, Y), where X and Y are integers from 0 to N−1. An electric current flows through the grid, between the nodes at (0, 0) and (N−1, N−1).

- (A[T], B[T] + 1), if C[T] = 0 or
- (A[T] + 1, B[T]), if C[T] = 1

Write a function:

def solution(n, a, b, c)

For example, given N = 4, M = 9 and the following arrays:

Given N = 4, M = 1 and the following arrays:

Assume that:

- N is an integer within the range [1..400];
- M is an integer within the range [0..2*N*(N−1)];
- each element of arrays A, B is an integer within the range [0..N−1];
- each element of array C is an integer that can have one of the following values: 0, 1.

Complexity:

- expected worst-case time complexity is O(N
^{2}*log(N));^{2}) (not counting the storage required for input arguments).

**×** N square mesh-shaped grid of wires, as shown in a figure below. Nodes of the grid are at points (X, Y), where X and Y are integers from 0 to N−1. An electric current flows through the grid, between the nodes at (0, 0) and (N−1, N−1).

- (A[T], B[T] + 1), if C[T] = 0 or
- (A[T] + 1, B[T]), if C[T] = 1

Write a function:

object Solution { def solution(n: Int, a: Array[Int], b: Array[Int], c: Array[Int]): Int }

For example, given N = 4, M = 9 and the following arrays:

Given N = 4, M = 1 and the following arrays:

Assume that:

- N is an integer within the range [1..400];
- M is an integer within the range [0..2*N*(N−1)];
- each element of arrays A, B is an integer within the range [0..N−1];
- each element of array C is an integer that can have one of the following values: 0, 1.

Complexity:

- expected worst-case time complexity is O(N
^{2}*log(N));^{2}) (not counting the storage required for input arguments).

**×** N square mesh-shaped grid of wires, as shown in a figure below. Nodes of the grid are at points (X, Y), where X and Y are integers from 0 to N−1. An electric current flows through the grid, between the nodes at (0, 0) and (N−1, N−1).

- (A[T], B[T] + 1), if C[T] = 0 or
- (A[T] + 1, B[T]), if C[T] = 1

Write a function:

public func solution(N : Int, inout _ A : [Int], inout _ B : [Int], inout _ C : [Int]) -> Int

For example, given N = 4, M = 9 and the following arrays:

Given N = 4, M = 1 and the following arrays:

Assume that:

- N is an integer within the range [1..400];
- M is an integer within the range [0..2*N*(N−1)];
- each element of arrays A, B is an integer within the range [0..N−1];
- each element of array C is an integer that can have one of the following values: 0, 1.

Complexity:

- expected worst-case time complexity is O(N
^{2}*log(N));^{2}) (not counting the storage required for input arguments).

**×** N square mesh-shaped grid of wires, as shown in a figure below. Nodes of the grid are at points (X, Y), where X and Y are integers from 0 to N−1. An electric current flows through the grid, between the nodes at (0, 0) and (N−1, N−1).

- (A[T], B[T] + 1), if C[T] = 0 or
- (A[T] + 1, B[T]), if C[T] = 1

Write a function:

public func solution(_ N : Int, _ A : inout [Int], _ B : inout [Int], _ C : inout [Int]) -> Int

For example, given N = 4, M = 9 and the following arrays:

Given N = 4, M = 1 and the following arrays:

Assume that:

- N is an integer within the range [1..400];
- M is an integer within the range [0..2*N*(N−1)];
- each element of arrays A, B is an integer within the range [0..N−1];
- each element of array C is an integer that can have one of the following values: 0, 1.

Complexity:

- expected worst-case time complexity is O(N
^{2}*log(N));^{2}) (not counting the storage required for input arguments).

**×** N square mesh-shaped grid of wires, as shown in a figure below. Nodes of the grid are at points (X, Y), where X and Y are integers from 0 to N−1. An electric current flows through the grid, between the nodes at (0, 0) and (N−1, N−1).

- (A[T], B[T] + 1), if C[T] = 0 or
- (A[T] + 1, B[T]), if C[T] = 1

Write a function:

Private Function solution(N As Integer, A As Integer(), B As Integer(), C As Integer()) As Integer

For example, given N = 4, M = 9 and the following arrays:

Given N = 4, M = 1 and the following arrays:

Assume that:

- N is an integer within the range [1..400];
- M is an integer within the range [0..2*N*(N−1)];
- each element of arrays A, B is an integer within the range [0..N−1];
- each element of array C is an integer that can have one of the following values: 0, 1.

Complexity:

- expected worst-case time complexity is O(N
^{2}*log(N));^{2}) (not counting the storage required for input arguments).

Information about upcoming challenges, solutions and lessons directly in your inbox.

© 2009–2018 Codility Ltd., registered in England and Wales (No. 7048726). VAT ID GB981191408. Registered office: 107 Cheapside, London EC2V 6DN